
Bionic Arduino

Introduction to Microcontrollers with Arduino

Class 4

20 Nov 2007 - machineproject - Tod E. Kurt

What’s for Today

• About PWM

• Controlling Servos

• About the I2C bus

• Using I2C on Arduino

• About Accelerometers

• Nintendo Wii Nunchuck as Input Device

blink b
link

compile

upload

sketch runs

TX/RX flashLoad “File/Sketchbook/Examples/Digital/Blink”

Recap: Blinky LED
Make sure things still work

Change the “delay()” values to change blink rate

Pulse Width Modulation

• More commonly called “PWM”

• Computers can’t output analog voltages

• Only digital voltages (0 volts or 5 volts)

• But you can fake it

• if you average a digital signal flipping
between two voltages.

• For example...

PWM

0 volts

5 volts

50% 50% 50% 50% 50%

2.5 Volts

0 volts

5 volts

20% 80%

1.0 Volts

50%

20% 80% 20% 80%

0 volts

5 volts

75% 25%

3.75 Volts

75% 25% 75% 25%

output_voltage = (on_time / off_time) * max_voltage

Output voltage is averaged from on vs. off time

PWM
• Used everywhere

• Lamp dimmers, motor
speed control, power
supplies, noise making

• Three characteristics of
PWM signals

• Pulse width range (min/max)

• Pulse period
(= 1/pulses per second)

• Voltage levels
(0-5V, for instance)

width

period

height

You experienced a few applications of PWM already.

Servomotors

• Can be positioned
from 0-180º

• Internal feedback
circuitry & gearing
takes care of the
hard stuff

• Easy three-wire
PWM 5V interface

(usually)

More specifically, these are R/C hobby servos used by remote control enthusiasts
In general, “servomotor” is a motor with an inherent feedback mechanism that allows you to send
position commands to it without requiring you to do the position reading.

Servos are Awesome
• DC motor

• High-torque gearing

• Potentiometer to
read position

• Feedback circuitry to
read pot and control
motor

• All built in, you just
feed it a PWM signal

With these little blue ones you have, you can see inside a bit at the internals of the servo.

Servos, good for what?

• Roboticists, movie effects people, and
puppeteers use them extensively

• Any time you need controlled, repeatable
motion

• Can turn rotation into linear movement
with clever mechanical levers

Even clothes use servos now: http://www.technologyreview.com/read_article.aspx?id=17639&ch=infotech

Servos
• Come in all sizes

• from super-tiny

• to drive-your-car

• But all have the same
3-wire interface

• Servos are spec’d by:
157g

9g

weight: 9g
speed: .12s/60deg @ 6V

torque: 22oz/1.5kg @ 6V
voltage: 4.6~6V

size: 21x11x28 mm

http://rctoys.com/
http://hobbypeople.net/

Servo Mounts & Linkages

Lots of ways to mount a servo

And turn its rotational motion
into other types of motion

mounting bracket: http://www.sierragiant.com/prod28.html

Servo Control

180º Power (+5V)
Ground (0V)

Control (PWM)

• PWM freq is 50 Hz (i.e. every 20 millisecs)

• Pulse width ranges from 1 to 2 millisecs

• 1 millisec = full anti-clockwise position

• 2 millisec = full clockwise position

Servo Movement

0 degrees 90 degrees 180 degrees

1000 microsecs 1500 microsecs 2000 microsecs

In practice, pulse range can range from 500 to 2500 microsecs

(and go ahead and add a wire marker to your servo like the above)
Put the red “arm” on your servo. Needs a philips screwdriver.
Many commercial servo drivers have a calibration setting to deal with servo variability

Servo and Arduino
First, add some jumper wires to the servo connector

Gnd

Power

PWM control

I recommend matching the color coding of the wires as closely as possible

Servo and Arduino

Plug control wire
to digital pin 7

Plug power
wires in

Moving a Servo

Move the servo across
its range of motion

“ServoSimple”

Uses delayMicroseconds() for pulse width

Uses delay() for pulse frequency

Sketch is in the handout
Created a custom function to handle making servo pulses
New function “delayMicroseconds()”. Like “delay()”, but µsec instead of millisec.
(and actually, just delaying 20 millisec is kinda wrong. should be: 20 - (pulsewidth/1000)
(1000 microseconds = 1 millisecond, and 1000 milliseconds = 1 second)

Serial-controlled Servo

Takes the last servo
example and adds our

standard serial input to it.

Drive the servo
by pressing

number keys

“ServoSerialSimple”

Sketch is in the handout.
Why that for loop? Because it takes time for the servo to get to a position and it has no memory.

Aside: Controlling Arduino

• Any program on the computer, not just the
Arduino software, can control the Arduino
board

• On Unixes like Mac OS X & Linux, even the
command-line can do it:

demo% export PORT=/dev/tty.usbserial-A3000Xv0
demo% stty -f $PORT 9600 raw -parenb -parodd cs8 -hupcl -cstopb clocal
demo% printf "1" > $PORT # rotate servo left
demo% printf "5" > $PORT # go to middle
demo% printf "9" > $PORT # rotate servo right

Unix is rad.

Robo Cat Toy Idea

Tape on a pipe cleaner, and using random
behavior similar to the “Candlelight”

sketch, make a randomly moving cat toy

Be sure to securely mount the servo before doing trial runs. Cats are good at taking apart prototype
electronics.

Servo Timing Problems

• Two problems with the last sketch

• When servoPulse() function runs,
nothing else can happen

• Servo isn’t given periodic pulses to keep it
at position

• You need to run two different “tasks”:

• one to read the serial port

• one to drive the servo

If a servo is not being constantly told what to do, it goes slack and doesn’t lift/push/pull

Better Serial Servo

Works just like
ServoSerialSimple

(but better)

Uses “millis()” to
know what time it is

Update the servo when
needed, not just when
called at the right time

“ServoSerialBetter”

Sketch is in the handout.
Trades memory use (the extra variables), for more useful logic.
Can call updateServo() as often as you want, servo is only moved when needed.

Multiple Servos

• The updateServo() technique can be
extended to many servos

• Only limit really is number of digital output
pins you have

• It starts getting tricky after about 8 servos
though

Multiple “Tasks”

• Define your task

• Break it up into multiple time-based chunks (“task slices”)

• Put those task slices in a function

• Use millis() to determine when a slice should run

• Call the functions from loop()

The concept inside updateServo() is
useful anytime you need to do multiple “things

at once” in an Arduino sketch:

Inside your task slices, avoid using delay(), for loops, and other code structures that would cause
the code to stay inside a task for too long
This is called “cooperative multitasking”, and it’s how OSs in the 80s worked.

Arduino PWM

• Arduino has built-in PWM

• On pins 9,10,11

• Use analogWrite(pin,value)

• It operates at a high, fixed frequency
(thus not usable for servos)

• But great for LEDs and motors

• Uses built-in PWM circuits of the
ATmega8 chip -» no software needed

why all the software, doesn’t Arduino have PWM?

The PWM speed used for analogWrite() is set to 450Hz or 30 kHz currently. I forget which, but it’s
not something changeable without understanding more about how AVRs work.
So when programming AVRs in C outside of Arduino, PWM speed can be set to just about any value.

Take a Break

Serial Communication

Separate wires for transmit & receive

Asynchronous communication

asynchronous – no clock
Data represented by setting
HIGH/LOW at given times

Synchronous communication

Synchronous – with clock
Data represented by setting

HIGH/LOW when “clock” changes

A single clock wire & data wire for
each direction like before

Device A Device B

TX

RX

RX

TX

Device A Device B

clock

data A->B

data B->A

Each device must have good “rhythm” Neither needs good rhythm, but one is the conductor

Is one better than the other? It depends on your application. Async is good if there are only two
devices and they’re both pre-configured to agree on the speed (like your Arduino sketches)

Synchronous is generally better for faster speeds (because you don’t need an accurate clock, just
the ability to watch the clock wire).

I2C, aka “Two-wire”

Master
device

Peripheral
device 1

Peripheral
device 2

Peripheral
device N

• • •

dataSDA

clockSCK

Synchronous serial bus with shared a data line

• Up to 127 devices on one bus
• Up to 1Mbps data rate
• Really simple protocol (compared to USB,Ethernet,etc)

• Most microcontrollers have it built-in

a little network for your gadgets

The shared data line means the devices have to agree on when they should “talk” on it. Like how on
CBs you say “over” and “over & out” to indicate you’re finished so the other person talk.

See “Introduction to I2C”: http://www.embedded.com/story/OEG20010718S0073
“I2C” stands for “Inter-Integrated Circuit”, but no one calls it that
And if your microcontroller doesn’t have I2C hardware built-in, you can fake it by hand in software
(for master devices anyway)

Many I2C devices

touch sensor compass

fm transmitter

non-volatile
memory

LCD display
temperature &
humidity sensor

And many others
(gyros,keyboards, motors,...)

Images from Sparkfun.com,except LCD from matrixorbital.com

Obligatory BlinkM Promo
I2C Smart LED

Does all the hard PWM & waveform generation for you
You should be able to buy these from Sparkfun.com in a month or so.

Nintendo Wii Nunchuck

• Standard I2C interface

• 3-axis accelerometer with
10-bit accuracy

• 2-axis analog joystick with
8-bit A/D converter

• 2 buttons

• $20

If you look at the architecture for the Nintendo Wii and its peripherals, you see an almost un-Nintendo adherence
to standards. The Wii controllers are the most obvioius examples of this. The Wii controller bus is standard I2C.
The Wii remote speaks Bluetooth HID to the Wii (or your Mac or PC)

Because it uses standard I2C, it’s easy to make the Nunchuck work with Arduino, Basic Stamp or most other
microcontrollers.

See: http://www.wiili.org/index.php/Wiimote/Extension_Controllers/Nunchuk
and: http://www.windmeadow.com/node/42
and: http://todbot.com/blog/2007/10/25/boarduino-wii-nunchuck-servo/

And then there’s the Wii Remote, besides Bluetooth HID, it also has accelerometers, buttons, speaker, memory, and
is I2C master.

Accelerometer?
• Measures acceleration

(changes in speed)

• Like when the car
pushes you into the seat

• Gravity is acceleration

• So, also measures tilt

horizontal tilt right tilt left

Nunchuck Accelerometer

X
Z

Y

Wii Remote & Nunchuck
accelerometer axes

I’m not sure if I have the Nunchuck one right.

Wiimote axis image from http://www.wiili.org/index.php/Wiimote

I2C on Arduino

• I2C built-in on Arduino’s
ATmega168 chip

• Use “Wire” library to access it

• Analog In 4 is SDA signal

• Analog In 5 is SCK signal

SDA

SCK

Arduino “Wire” library
Writing Data

Start sending

Join I2C bus
(as master)

Send data

Load Wire library

Stop sending

And what the various commands do are documented in the instructions / datasheet for a particular
device.

Arduino “Wire” library
Reading Data

Request data from device

Join I2C bus
(as master)

Get data

What kinds of interactions you can have depends on
the device you’re talking to

Most devices have several “commands”

And what the various commands do are documented in the instructions / datasheet for a particular
device.

Wiring up the Nunchuck
We could hack off the connector

and use the wires directly

But instead let’s use this
little adapter board

Wii Nunchuck Adapter

SCK GND

+V SDA

n/c

n/c

Nunchuck Pinout

(looking into Nunchuck connector)

Adapter Pinout

+V SCK

SDAGND

Note there *are* labels on the adapter, but they’re wrong. So you’ll have to trust the diagrams
above

Wiring it Up

GND SDA
+5V SCK

SDA (pin 4)

SCK (pin5)

Pluggin’ in the ‘chuck

Trying the Nunchuck
“NunchuckPrint”

Read the Nunchuck
every 1/10th of a second
& print out all the data:
- joystick position (x,y)
- accelerometer (x,y,z)
- buttons Z,C

X
Z

Y

Uses the beginnings of an Arduino library I’m writing.

Adding a Servo

Move the servo by
moving your arm

“NunchuckServo”

You’re a cyborg!

Also press the Z button to
flash the pin 13 LED

Utilizes the task slicing mentioned before

Nunchuck Servo

Twist the
nunchuck

and the servo
matches your

movement

Segway Emulator

Same basic code as NunchuckServo.
For details see: http://todbot.com/blog/2007/10/25/boarduino-wii-nunchuck-servo/

Going Further

• Servos

• Hook several together to create a multi-
axis robot arm

• Make a “servo recorder” to records your
arm movements to servo positions and
plays them back

• Great for holiday animatronics

Going Further

• I2C devices

• Try out some other devices

• Just string them on the same two wires used
for the Nunchuck

• Cooperative Multitasking

• Try making a theremin with nunchuck & piezo

• See if previous examples can be made more
responsive

Going Further

• Nunchuck

• It’s a freespace motion sensor. Control
anything like you’re waving a magic wand!

• What about the joystick? We didn’t even
get a chance to play with that

• Alternative input device to your
computer: control Processing, etc.

Summary
You’ve learned many different physical building blocks

LEDs

switches/buttons
resistive sensors

motors

piezos

servos

X
Z

Y

accelerometers

Summary
And you’ve learned many software building blocks

pulse width
modulation

serial
communication

digital I/O

analog I/O

data driven
code

frequency
modulation

multiple tasks

I2C

Summary

Hope you had fun and continue playing with Arduino

Feel free to contact me to chat about this stuff

Tod E. Kurt

tod@todbot.com

END Class 4

http://todbot.com/blog/bionicarduino/

Feel free to email me if you have any questions.

mailto:tod@todbot.com
mailto:tod@todbot.com
mailto:tod@todbot.com
mailto:tod@todbot.com

