
Spooky Projects

Introduction to Microcontrollers with Arduino

Class 3

21 Oct 2006 - machineproject - Tod E. Kurt

What’s For Today

• Controlling Arduino from a computer

• Controlling a computer from Arduino

• Servomotors

• R,G,B LED color mixing

Remove ProtoShield
First half of class, we don’t need it

And we want to observe the Arduino board

“Shields down, cap’n!”

Recap: Programming

Reset

Edit Compile

Upload

Remember: always start from a known working system

Communicating
with Others

• Arduino can use same USB cable for
programming and to talk with computers

• Talking to other devices uses the “Serial”
commands

• Serial.begin() – prepare to use serial

• Serial.print() – send data to computer

• Serial.read() – read data from computer

Can talk to not just computers.
Most things more complex than simple sensors/actuators speak serial.

Watch the TX/RX LEDS

• TX – sending to PC

• RX – receiving from PC

• Used when programming
or communicating

(and keep an eye
on that pesky

pin13 LED too)

Arduino Says “Hi”

• Send “Hello world!”
to your computer
(and blink LED)

• Click on
“Serial Monitor”
to see output

• Watch TX LED
compared to pin13
LED

“serial_hello_world”

This sketch is located in the handout, but it’s pretty short.
Use on-board pin 13 LED, no need to wire anything up.

Telling Arduino What To Do

• You type “H”
– LED blinks

• In “Serial Monitor”
type “H”, press Send

• Watch pin 13 LED

“serial_read_basic”

This sketch is in “Examples/serial_comm/serial_read_basic”.
Notice how you might not always read something, thus the “-1” check.
Can modify it to print “hello world” after it receives something, but before it checks for ‘H’.
This way you can verify it’s actually receiving something.

Arduino Communications

• Psst, Arduino doesn’t really do USB

• It really is “serial”, like old RS-232 serial

• All microcontrollers can do serial

• Not many can do USB

• Serial is easy, USB is hard

serial terminal from the olde days

is just serial communications

Serial Communications

• “Serial” because data is broken down into
bits, each sent one-by-one on a single wire:

‘H’
= 0 1 0 0 1 0 0 0
= L H L L H L L L

=
LOW

HIGH

• Toggle a pin to send data, just like blinking an LED

• Only a single data wire is needed to send data.
One other to receive.

Note, a single data wire. You still need a ground wire.

Arduino & USB-to-serial

USB to serial

Arduino

microcontroller

Arduino board is really two circuits

Original Arduino boards were RS-232 serial, not USB.

New Arduino Mini
Arduino Mini separates the two circuits

Arduino Mini Arduino Mini USB adapter

aka. “Arduino Stamp”
If you don’t talk with a computer, the USB-to-serial functionality is superfluous.

Arduino to Computer
Arduino boardLaptop

USB to serial
Arduino

microcontroller

USB to serial
driver

Arduino
programmer

Processing
sketch

Java program

RX

TX

-OR-

-OR-

-OR-
...

USBTX

RX chip

USB is totally optional for Arduino
But it makes things easier

Original Arduino boards were RS-232 serial, not USB.

Arduino & USB

• Because Arduino is all about serial,

• And not USB,

• Interfacing to things like USB flash drives,
USB hard disks, USB webcams, etc. is not
possible

Also, USB is a host/peripheral protocol. Being a USB “host” means needing a lot of processing
power and software, not something for a tiny 8kB microcontroller.
It can be a peripheral. In fact, there is an open project called “AVR-USB” that allows AVR chips like
used in Arduino to be proper USB peripherals. See: http://www.obdev.at/products/avrusb/

Controlling the Computer

• Can send sensor data from Arduino to
computer with Serial.print()

• There are many different variations to suite
your needs:

Controlling the Computer

In Arduino: read sensor, send data as byte

In Processing: read the byte, do something with it

You write one program on Arduino, one on the computer

But writing Processing programs is for another time

• Receiving program on the computer can be
in any language that knows about serial
ports

• C/C++, Perl, PHP, Java, Max/MSP,
Python, Visual Basic, etc.

• Pick your favorite one, write some code for
Arduino to control

Controlling the Computer

If interested, I can give details on just about every language above.

Another Example

• Type in a
number 1-9 and
LED blinks that
number

• Converts
number typed
into usable
number

“serial_read_blink”

This sketch is also in the handout

Pulse Width Modulation

• More commonly called “PWM”

• Computers can’t output analog voltages

• Only digital voltages (0 volts or 5 volts)

• But you can fake it

• if you average a digital signal flipping
between two voltages.

• For example...

PWM

0 volts

5 volts

50% 50% 50% 50% 50%

2.5 Volts

0 volts

5 volts

20% 80%

1.0 Volts

50%

20% 80% 20% 80%

0 volts

5 volts

75% 25%

3.75 Volts

75% 25% 75% 25%

output_voltage = (on_time / off_time) * max_voltage

Output voltage is averaged from on vs. off time

PWM
• Used everywhere

• Lamp dimmers, motor
speed control, power
supplies, noise making

• Three characteristics of
PWM signals

• Pulse width range (min/max)

• Pulse period
(= 1/pulses per second)

• Voltage levels
(0-5V, for instance)

width

period

height

Servomotors

• Can be positioned
from 0-180º

• Internal feedback
circuitry & gearing
takes care of the
hard stuff

• Easy three-wire
PWM 5V interface

More specifically, these are R/C hobby servos used by remote control enthusiasts
In general, “servomotor” is a motor with an inherent feedback mechanism that allows you to send
position commands to it without requiring you to do the position reading.

Servos, good for what?

• Roboticists, movie effects people, and
puppeteers use them extensively

• Any time you need controlled, repeatable
motion

• Can turn rotation into linear movement
with clever mechanical levers

Even clothes use servos now: http://www.technologyreview.com/read_article.aspx?id=17639&ch=infotech

Servos

• Come in all sizes

• from super-tiny

• to drive-your-car

• But all have the
same 3-wire
interface 157g

9g

http://rctoys.com/
http://hobbypeople.net/

Servo Mounts & Linkages

mounting bracket: http://www.sierragiant.com/prod28.html
sdfsdf

Servos

180º Power (+5V)
Ground (0V)

Control (PWM)

• PWM freq is 50 Hz (i.e. every 20 millisecs)

• Pulse width ranges from 1 to 2 millisecs

• 1 millisec = full anti-clockwise position

• 2 millisec = full clockwise position

Servo Movement

low

high

1000 microseconds

0 degrees

low

high

1250 microseconds

45 degrees

low

high

2000 microseconds

180 degrees

• To position, send a pulse train from 1 to 2 ms

• To hold a position, pulses must repeat

• Takes time to rotate, so pulse too fast & it won’t move

1 millisecond = 1000 microsecond
See http://www.societyofrobots.com/actuators_servos.shtml

Servo Movement

0 degrees 90 degrees 180 degrees

1000 microsecs 1500 microsecs 2000 microsecs

In practice, pulse range can be 500 to 2500 microsecs

(and go ahead and add a wire marker to your servo like the above)
Put the red “arm” on your servo. Needs a philips screwdriver.
Many commercial servo drivers have a calibration setting to deal with servo variability

Servo and Arduino

First, add some
jumper wires to the

servo connector

Servo and Arduino
Plug power lines in,

Plug signal to digital pin 7

Moving a Servo
Move the servo across its full range of motion

“servo_move_simple”

•Uses
delayMicroseconds()
for pulse width

•Uses delay() for
pulse frequency

Sketch is in the handout
Created a custom function to handle making servo pulses
New function “delayMicroseconds()”. Like “delay()”, but µsec instead of msec.
(and actually, just delaying 20 msec is kinda wrong. should be: 20 - (pulsewidth/1000)

Serial-controlled Servo

Takes the last
 servo example and

adds the last
serial example to it.

Drive the servo
by pressing

number keys

“servo_serial_simple”

This sketch is located in the handout.
Why that for loop? Because it takes time for the servo to get to a position and it has no memory.

Controlling Arduino

• Any program on the computer, not just the
Arduino software, can control the Arduino
board

• On Unixes like Mac OS X & Linux, even the
command-line can do it:

demo% export PORT=/dev/tty.usbserial-A3000Xv0
demo% stty -f $PORT 9600 raw -parenb -parodd cs8 -hupcl -cstopb clocal
demo% printf "1" > $PORT # rotate servo left
demo% printf "5" > $PORT # go to middle
demo% printf "9" > $PORT # rotate servo right

Unix is rad.

Take a Break

Servo Timing Problems

• Two problems with the last sketch

• When servoPulse() function runs,
nothing else can happen

• Servo isn’t given periodic pulses to keep it
at position

If a servo is not being constantly told what to do, it goes slack and doesn’t lift/push/pull

Better Serial Servo
“servo_serial_better”

Works just like
servo_serial_simple

(but better)

Uses “millis()” to
know what time it is

Update the servo when
needed, not just when
called at the right time

This sketch is located in the handout.
Trades memory use (the extra variables), for more useful logic.
Can call updateServo() as often as you want, servo is only moved when needed.

Multiple Servos

• The updateServo() technique can be
extended to many servos

• Only limit really is number of digital output
pins you have

• It starts getting tricky after about 8 servos
though

Arduino PWM

• Arduino has built-in PWM

• On pins 9,10,11

• Use analogWrite(pin,value)

• It operates at a high, fixed frequency
(thus not usable for servos)

• But great for LEDs and motors

• Uses built-in PWM circuits of the
ATmega8 chip -» no software needed

why all the software, doesn’t Arduino have PWM?

The PWM speed used for analogWrite() is set to 30 kHz currently.
When programming AVRs, PWM speed can be set to just about any value.

R,G,B LEDs

Arduino
board

pin 11

gnd

pin 10

pin 9

220 (red,red,brown) or

330 (orange,orange,brown)

red green blue

Three PWM outputs and three primary colors.
Just screams to be made, doesn’t it?

With RGB you can
make any color

(except black)

Put back on the ProtoShield for this.
Use either the 220 or 330 ohm resistors in your kit, if you don’t have enough of one or the other
I have lots more 220 if you need them

R,G,B LEDs

Cut leads of resistors and LEDs to make for a more compact circuit.
Also, less likely to short against itself.

RGB Color Fading

“dimmingLEDs”

Slow color fading
and mixing

Also outputs the
current color values

to the serial port
This sketch is located in the handout.
It just ramps up and down the red,green,& blue color values and writes them with analogWrite()
from http://www.arduino.cc/en/Tutorial/DimmingLEDs

Mood Light

Diffuser made from
piece of plastic
scratched with

sandpaper

Also, can use plastic wrap scrunched up to make an interesting diffuser.

Serial-controlled RGB
“serial_rgb_led”

Send color
commands to

Arduino
e.g. “r200”, “g50”, “b0”

g50

Sketch parses what
you type, changes

LEDs

This sketch is located in the handout.
Color command is two parts: colorCode and colorValue
colorCode is a character, ‘r’, ‘g’, or ‘b’.
colorValue is a number between 0-255.
Sketch shows rudimentary character string processing in Arduino

Reading Serial Strings
• New Serial function in

last sketch:
“Serial.available()”

• Can use it to read all
available serial data from
computer

• Great for reading strings
of characters

• The “readSerialString()”
function at right takes a
character string and sticks
available serial data into it

Pay no attention to the pointer symbol (“*”)
Must be careful about calling readSerialString() too often or you’ll read partial strings

Going Further

• R,G,B LEDS

• You can pretty easily
replicate the Ambient Orb
($150) functionality

• Make a status display for
your computer

• Computer-controlled accent
lighting (a wash of color
against the walls)

Ambient Orb doesn’t connect to computer though. Uses the pager network.
Ambient Devices: http://www.ambientdevices.com/

Glowing Orb

Going Further

• Servos

• Mount servo on a video camera –
computer-controlled camera motion

• Make a robot (a little obvious)

• Lots of spooky uses

• they’re the core of movie animatronics

I’m not too mechanical, so I don’t have many concrete and still working examples of servo use.

Going Further
• Serial communications

• Not just for computer-to-Arduino
communications

• Many other devices speak serial

• Older keyboards & mice speak are serial
(good for sensors!)

• Interface boards (graphic LCDs, servo
drivers, RFID readers, Ethernet, Wi-Fi)

Serial Examples

to Wi-Fi to Ethernet to graphic LCD
to 8-servo controller

Lantronix Wi-Port and Lantronix Xport http://lantronix.com/
Seetron Serial Graphic display and Mini SSC http://www.seetron.com/slcds.htm http://www.seetron.com/ssc.htm

Serial Examples

to Roomba

“Hacking Roomba”, out in a few weeks, by me. ;-)
http://hackingroomba.com/

Next Week

• All about piezos

• Building a melody player

• Using piezos as pressure & knock sensors

• Using Processing with Arduino

• Stand-alone Arduino

Tod E. Kurt

tod@todbot.com

END Class 3

http://todbot.com/blog/spookyarduino

mailto:tod@todbot.com
mailto:tod@todbot.com
http://todbot.com/blog/spookyarduino
http://todbot.com/blog/spookyarduino

