
Spooky Projects

Introduction to Microcontrollers with Arduino

Class 2

14 Oct 2006 - machineproject - Tod E. Kurt

What’s for Today

• Reading buttons

• Reading analog values (knobs and photocells)

• Detecting the dark

• More complex LED circuits

Also, any questions about last week?
Or about stuff on the Arduino site?

Recap: Blinky LED

Recap: Programming

Reset

Edit Compile

Upload

Known Good
Configuration

Rule #1 of experimenting:

Before trying anything new,

Get back to a known working state

So let’s spend a few minutes & get “led_blink” working again

Get your entire edit->compile->upload->run working
Even if it becomes so second nature to you that you feel you shouldn’t need to, do it anyway.
Especially when mysterious problems arise, revert to a known state

LED Light Tubes

Snug-fit straws on
the end of your
LEDs to make

them glow more
visibly

I have a box of multi-colored straws for whatever color LED you like

Digital Input

knife switch toggle switch
(SPST) (SPDT)

Switches make or break a connection

Most inputs you’ll use are variations on switches

Fundamentally, they’re all like the simple knife switch
Single pole = only one circuit is being controlled
Double pole = two circuits are being controlled at once
Single throw = only one path for circuit
Double throw = two potential paths for circuit

Many Kinds of Switches

magnetic tilt leverhexidecimal
Tilt sensor has a little ball inside you can hear.
Used to have mercury switches, with real metallic mercury inside. Not so much now tho’.
Magnetic reed switches are cool, but delicate.
The hex switch is actually many switches in one, and outputs 4 signals

Tiny Switches

always connected together

connect
when

pushed

Pressing the button, “closes the gap”

“gap”

These are the switches in your kit. One should have a slightly different button on it than the other.

Make Your Own
Switches

• Anything that makes a connection

• Wires, tin foil, tinfoil balls, ball bearings

• Pennies!

• Nails, bolts, screws

• Or repurpose these tiny switches as bump
detectors or closure detectors

Homemade Switches
“Trick Penny”

Penny on a surface.
When the penny is lifted, alarms go off

Homemade Switches
“Trick Penny”

Wire soldered to penny.
Wire looped or crimped to aluminum sheet.

Homemade Switches
“Smart Wind Chimes”

When the wind blows hard enough,
you’re sent email

Should use stranded wire, not solid.
Code analyzes series of on/off/on/off pulses to determine wind.

Digital Input

• Switches make or break a connection

• But Arduino wants to see a voltage

• Specifically, a “HIGH” (5 volts)

• or a “LOW” (0 volts)

How do you go from make/break to high/low?

HIGH

LOW

Switch to Volts:
Positive Logic

“pull-down”

• Digital inputs can
“float” between 0 and
5 volts

• Resistor “pulls down”
input to ground (0
volts)

• Pressing switch sets
input to 5 volts

• Press is HIGH
Release is LOW

Don’t want “pull-down” to be too small, or it uses a lot of current

Switch to Volts:
Inverted Logic

• Resistor pulls up
input to 5 volts

• Switch sets input
to 0 volts

• But now the sense
is inverted

• Press is LOW

• Release is HIGH “pull-up”

Inverted logic like this is common in microcontrollers

Arduino Digital Input

• Add switch circuit to any digital input (except pin 13)

• For output, use either existing pin 13 LED or
wire up your own

Arduino Digital Input

Output is on-board pin 13 LED for now
Using the fact that two of the switch leads are connected.
Also, notice color coding. Blue is ground, purple is signal
But pin 13 LED is underneath! So gotta take a peak.

Making Jumper Wires
• strip off about 1/2” of insulation

• Can use wire strippers, cutters, or fingers

• Can be a pain, so I have some pre-cut wires

Making Jumper Wires
The end result Or buy pre-cut

One of these “how much is your time worth?” situations.
If you do a lot of breadboarding, pre-cut jumpers can save a lot of time.

Using digitalRead()

• In setup(): use pinMode(myPin,INPUT)
to make pin an input

• In loop(): use digitalRead(myPin) to
get switch position

• If doing many tests, use a variable to hold the output value of
digitalRead().

• e.g. val = digitalRead(myPin)

Enough with the atoms, back to the bits

Digital Input Sketch

Now you control the blinking

Load “examples/digital IO/digital_read”

Press to turn on, release to turn off.

Changing Blink Rate
Or, combine “led_blink” with “digital_read”

Built up of pieces you’ve seen before. Sorta like Lego.
Not an example in the “Examples” folder, but just something I made up.

Multiple Switches

Same sub-circuit,
just duplicate

Can do lots of switches this way.

Multiple Switches

An example of how to lay it out. Don’t have to do it here. Try at home.
I have extra 10k resistors.

Digital Input Uses

• spooky, remember?

Take a Break

Analog Input
To computers, analog is chunky

image from: http://www.engr.colostate.edu/~dga/me307/lectures.html

Analog Input

• Many states, not just two (HIGH/LOW)

• Number of states (or “bins”) is resolution

• Common computer resolutions:

• 8-bit = 256 states

• 16-bit = 65,536 states

• 32-bit = 4,294,967,296 states

Analog Input

• Arduino (ATmega8) has six ADC inputs

• (ADC = Analog to Digital Converter)

• Reads voltage between 0 to 5 volts

• Resolution is 10-bit (1024 states)

• In other words, 5/1024 = 4.8 mV smallest
voltage change you can measure

Analog Input
Sure sure, but how to make a varying voltage?

With a potentiometer. Or just pot.

+5V–
measure–

gnd–

Color coding: red goes to power, blue to ground, purple to ‘measure here’ (it’s a mix, see?)

Potentiometers
Moving the knob is like moving

where the arrow taps the voltage on the resistor

And that’s actually how it works, btw, if you take apart a pot.
But I might have the directions reversed (clockwise vs. anti-clockwise).

Arduino Analog Input

Red to Vcc

Purple to A0

Blue to Gnd

Hook it up, plug in the wires in directly
“Vcc” is alias for +5V.
“Raw” is alias for external power (approx 9V)

Analog Input Sketch
Sketch “Examples/sensors_resistive/analog_read_led”

Turn knob to vary blink rate of the LED
Notice no pinMode() for analog inputs

Change to 0

What good are pots?

• Anytime you need a ranged input

• (we’re used to knobs)

• Measure rotational position

• steering wheel, etc.

• But more importantly for us, potentiometers
are a good example of a resistive sensor

Sensing the Dark
• Pots are example of a voltage divider

• Voltage divider splits a voltage in two

• Same as two resistors, but you can vary them

Sensing the Dark:
Photocells

• aka. photoresistor, light-dependent resistor

• A variable resistor

• Brighter light == lower resistance

• Photocells you have range approx. 0-10k

schematic symbol
Pretty cheap too. Can get a grab bag of 100 misc from Jameco for $20

Photocell Circuit

pin A0

gnd

Vcc

Looks a lot like the pot circuit, doesn’t it?

Photocell Arduino
Sketch

Can use as before, sketch “analog_read_led”

Wave your hand over it = blink faster
Point it towards the light = blink slower

Change to 0

Just like magic!
If circuit was configured the other way (photocell on bottom), then darkness would make it blink
slower.

More Spooky, Please
All this blinking is okay, but...

Booo!

I design
your eyes

Okay, so the googly-eyeness of it makes it more Simpsonesque than spooky.

Evil Glowing Eyes

Almost as cool as Roy Batty

LED Eyeballs
Little bit of hot glue and you’re set

Use your two orange LEDs

Use the two orange LEDs.
Save the R,G,B LEDs for next week.
Hot glue is the best thing in the world.
I brought my hot glue gun if you want to do this right now

Driving Two LEDs

• Could use two
Arduino pins.
But wasteful.

• Instead, put two
in series

• Doesn’t work for
blue LEDs
(and white, and some green)

Blue LEDs have a voltage drop of ~3.4V, two in series makes ~6.8V which is greater than the 5V the
Arduino puts out.
Don’t put LEDs in parallel. http://members.misty.com/don/ledd.html
Notice pin 10. That’s important.

LED Eyes

photocell circuit is as before
Notice, pin 10. This will become important later.

LED Eyes Brightness

• To complement analogRead(),
there is analogWrite().

• Only available on digital pins 9,10,11.
(yes, a little confusing)

• More next week about how it works.

• Can use it to set brightness of LEDs

LED Eyes Sketch
Sketch “analog_brightness”

As it gets darker, the LEDs get less bright
You just built an auto-dimmer

This is cool, but still not spooky enough.

Making Eyes Glow
(where “glow” is the throbbing of brightness)

How does that glow throbbing work?

Sleeping laptops do something similar

Need to describe how brightness changes over time

LED Brightness Functions

time

brightness

Brightness over time can be described as a graph

Draw your graph, use the resulting numbers

100% on

off

Doesn’t matter which numbers you choose right now

LED Brightness Functions

Then turn those numbers into an array

Use any pattern of numbers you like
but they must range between 0-255

 0 = full off
127 = half on
255 = full on

Make sure max_count is not too large!

LED Brightness Functions
Once you have your table...

1. Get a bright_table value
2. Send it out with analogWrite()
3. Advance counter into bright_table
4. Wait a bit
5. Repeat

...the rest is just programming

Glowing Eyes Sketch
“led_glow”

I can

Glowing Eyes

Going Further

• Glowing LEDs

• The last sketch is data driven

• So you can plug in any brightness function

• Make a flickering candle or a bad neon
light

Going Further

• Photocells

• Think of some interesting uses

• What about multiple photocells?

• Homemade Sensors

• Make some of your own!

Next Week

• Motion with Servos

• R,G,B color mixing for mood lighting

• Controlling Arduino from a computer

• Controlling a computer from Arduino

Tod E. Kurt

tod@todbot.com

END Class 2

http://todbot.com/blog/spookyarduino

mailto:tod@todbot.com
mailto:tod@todbot.com
http://todbot.com/blog/spookyarduino
http://todbot.com/blog/spookyarduino

