ARDX

experimentation kit for arduino

Experimenter’'s
Guide
for Arduino

wodnojwoo

oomlout.com

A Few Words

(ABOUT THIS KIT

The overall goal of this kit is fun. Beyond this, the aim is to get
you comfortable using a wide range of electronic components
through small, simple and easy circuits. The focus is to get each
circuit working then giving you the tools to figure out why. If you
encounter any problems, want to ask a question, or would like to
@ow more about any part, extra help is only an e-mail away help@oomlout.com. J
\

" ABOUT OPEN SOURCE HARDWARE

All of .:0oomlout:.'s projects are open source. What does this mean? It means everything
involved in making this kit, be it this guide, 3D models, or code is available for free
download. But it goes further, you're also free to reproduce and modify any of this
material, then distribute it for yourself. The catch? Quite simple, it is released under a
Creative Commons (By - Share Alike) license. This means you must credit .:oomlout:. in
your design and share your developments in a similar manner. Why? We grew up learning
and playing with open source software and the experience was good fun, we think it
would be lovely if a similar experience was possible with physical things.

More details on the Creative Commons CC (By - Share Alike) License can be found at
\ http://ardx.org/CCLI)

(" ABOUT .: OOMLOUT :.)

We're a plucky little design company focusing on producing
“delightfully fun open source products”

To check out what we are up to

\ http://www.oomlout.com j

(ABOUT PROBLEMS)

We strive to deliver the highest level of quality in each and every thing we produce. If you ever find an
ambiguous instruction, a missing piece, or would just like to ask a question, we'll try our best to help out.

help@oomlout.com
\ (we like hearing about problems it helps us improve future versions))

Thanks For Choosing .:oomlout:.

wodJNOojwo0

oomlout.com

.. WHERE TO FIND EVERYTHING :.

TBCN

table of contents

Before We Start

{ASEM}
{INST}
{PROG}
{ELEC}

Assembling the Pieces
Installing the Software
A Small Programming Primer

A Small Electronics Primer

The Circuits

{CIRCO1}
{CIRCO02}
{CIRCO3}
{CIRC04}
{CIRCO5}
{CIRCO6}
{CIRCO7}
{CIRCO8}
{CIRCO09}
{CIRC10}
{CIRC11}

Getting Started - (Blinking LED)

8 LED Fun - (Multiple LEDs)

Spin Motor Spin - (Transistor and Motor)
A Single Servo - (Servos)

8 More LEDs - (74HC595 Shift Register)
Music - (Piezo Elements)

Button Pressing - (Pushbuttons)
Twisting - (Potentiometers)

Light - (Photo Resistors)

Temperature - (TMP36 Temperature Sensor)

Larger Loads - (Relays)

/

t

visi

ino is,

Breadboard
3mm nut

[+ 4
LU
I
=
17
O
@)
=
-
(=
O
=
E
=
E8

//ardx.org/INTR

http

troduction to what an Ardu

For ani

Arduino Holder
3mm x 10mm bolt

pieces

assembling the

.- INSTALLING THE IDE :. 02 INST

This is the program used to write code for the Arduino. It may installing
seem a little daunting at first but once you have it installed and S G UL LY
start playing around, its secrets will reveal themselves.

Step 1: Download the software

Go to

http://arduino.cc/en/Main/Software
download the software for your operating system

Windows XP Mac 0OSX
(Step 2: Unzip the Software Step 2: Open The .dmg

Unzip Open (mount)
arduino-00 X X-win.zip (X X - version #)

Recommended Path

c:\Program Files\

arduino-00 X X-mac.dmg (x x- version #)

: h I . .
Step 3 S pgn"tCUt con Step 3: Copy The Application

c:\program files\arduino-00X X\ (X X- version #) Go to

Right Click " s . . i
Arduino.exe (send to>Desktop (create shortcut)) “Arduino” (in the;:i;’"f:s section of finder)

"Arduino" Application to the
"Applications" folder

Step 4: Plug In Your Arduino

Plug your Arduino in:
Using the included USB cable, plug your Arduino
board into a free USB port.

Wait for 2 bo to pop up /~ Step 4: Install Drivers "\

.:Duemilanove Boards Only:.

/~ Step 5: Add new Hardware "\ Go to

Skip searching the internet D %d&\gce tall
(click the next box when prompted to do so) . ouble Clic nsta

(click “Install from a list or specific location (Advanced)") K (FTDI Drivers for PPC Macs (X__ X X X).pkg /

Choose the Location Restart
Duemilanove Board
c:\program files\arduino-00 X X \drivers\FTDI USB Drivers\
Uno Board

k c:\program files\arduino-00 X X \drivers\ /
Finished
. Step 5: Plug In Your Arduino
Vista, Seven Plug your Arduino in:
/Step 5: Add new Hardwa re\ Using the included USB cable, plug your Arduino

board into a free USB port.
Run Device Manager Finished
Start > Run > devmgmt.msc
Choose the Arduino
Other Devices > Arduino Uno (Uno) - NOTE: :.

U_pdate Dr'_ver .: Encountering problems? :.
click *Update Driver” . Would like more details? Using Linux? :.
Select Driver .t http://ardx.org/LINU :.

click “Browse My Computer for Driver Software”

c:\program files\arduino-00 X X \drivers\
\ Finished /

03 PROG

programming
primer

.:A Small Programming Primer:.

[ARDUINO PROGRAMMING IN BRIEF

The Arduino is programmed in the C language. This is a quick little primer targeted at people
who have a little bit of programing experience and just need a briefing on the idiosyncracies of C
and the Arduino IDE. If you find the concepts a bit daunting, don't worry, you can start going
through the circuits and pick up most of it along the way. For a more in-depth intro, the
Qrduino.cc website is a great resource.

~N

(STRUCTURE

Each Arduino program

two required functions
(also called routines).

(often called a sketch) has

void setup(Q){ 1}
All the code between the two
curly brackets will be run once
when your Arduino program
first runs.

void Toop(O{ 1}
This function is run after setup
has finished. After it has run
once it will be run again, and
again, until power is removed.

_

[SYNTAX

-
One of the slightly

(this also makes it very

\alright.

frustrating elements of C is
its formatting requirements

powerful). If you remember
the following you should be

J

_

// (single line comment)
It is often useful to write notes
to yourself as you go along
about what each line of code
does. To do this type two
forward slashes and everything
until the end of the line will be
kignored by your program.

{ } (curly brackets)
Used to define when a block

of code starts and ends (used

L in functions as well as loops).)

Vs

/* */(multi line comment)
If you have a lot to say you can
span several lines as a
comment. Everything between
these two symbols will be
ignored in your program.

\

-
7 (semicolon)

Each line of code must be
ended with a semicolon (a
missing semicolon is often
the reason for a program
_refusing to compile).

NARIABLES
(

_/
\

than instructions to move
numbers around in an

L used to do the moving.

A program is nothing more

intelligent way. Variables are

~N

int (integer)
The main workhorse, stores a
number in 2 bytes (16 bits).
Has no decimal places and will
store a value between -32,768
|_and 32,767.

long (long)
Used when an integer is not

large enough. Takes 4 bytes (32
bits) of RAM and has a range
between -2,147,483,648 and

| 2,147,483,647.

boolean (boolean)
A simple True or False
variable. Useful

RAM.

because it only
uses one bit of

float (float)

Used for floating point math
(decimals). Takes 4 bytes (32
bits) of RAM and has a range
between -3.4028235E+38
and 3.4028235E+38.

\

char (character)
Stores one character using the
ASCII code (ie 'A' = 65). Uses
one byte (8 bits) of RAM. The
Arduino handles strings as an
array of char’s.

~/

.:For a full programming reference visit:.
http://ardx.org/PROG

03 PROG

programming
primer

(MATHS OPERATORS

~

Operators used for
manipulating numbers.
(they work like simple
maths).

_

(assignment) makes something equal to something else (eg. x)

=10 * 2 (x now equals 20))

(modulo) gives the remainder when one number is divided by
another (ex. 12 % 10 (gives 2))

(addition)
(subtraction)
(multiplication)
(division)

(COMPARISON OPERATORS

_
~

Operators used for
logical comparison.

_

== (equal to) (eg. 12 == 10 is FALSE or 12 == 12 is TRUE)
(not equal to) (eg. 12 1= 10 is TRUE or 12 1= 12 is FALSE)
(less than) (eg. 12 < 10 is FALSE or 12 < 12 is FALSE or 12 < 14 is TRUE)
(greater than) (eg. 12 > 10 is TRUE or 12 > 12 is FALSE or 12 > 14 is

FALSE)

J

(CONTROL STRUCTURE

p
Programs are reliant on
controlling what runs

next, here are the basic
control elements (there
are many more online).

~

_

(if(condition){ }
else if(condition){ }
else { }

This will execute the code between
the curly brackets if the condition
is true, and if not it will test the
else if condition if that is also

false the ellse code will execute.

for(int i = 0; i <
#repeats; i++){ }
Used when you would like to
repeat a chunk of code a humber
of times (can count up i++ or
down i-- or use any variable)

(DIGITAL

Used to set a pin's mode, pin
is the pin number you would
like to address 0-19 (analog 0-
5 are 14-19). The mode can
\either be INPUT or OUTPUT.

4 . . N\
pinMode(pin, mode);

_

digitalwrite(pin, value);

Once a pin is set as an OUTPUT,
it can be set either HIGH (pulled
to +5 volts) or Low (pulled to
ground).

int digitalRead(pin);
Once a pin is set as an INPUT
you can use this to return
whether it is HIGH (pulled to
+5 volts) or LOW (pulled to
ground).

~

/ANALOG

The Arduino is a digital
machine but it has the ability
to operate in the analog
realm (through tricks).
Here's how to deal with
things that aren't digital.

(. . .
int analogwrite(pin,

value);
Some of the Arduino's pins support
pulse width modulation (3, 5, 6, 9, 10,
11). This turns the pin on and off very
quickly making it act like an analog
output. The value is any nhumber
between 0 (0% duty cycle ~0v) and

\255 (100% duty cycle ~5 volts).

('i nt analogRead(pin);

When the analog input pins are set
to input you can read their voltage.
A value between 0 (for 0

volts) and 1024 (for

5 volts) will be

returned.

\

04 ELEC

electronics
primer

.:A Small Electronics Primer:.

(ELECTRONICS IN BRIEF
No previous electronic experience is required to have fun with this kit. Here are a few details
about each component to make identifying, and perhaps understanding them, a bit easier. If
at any point you are worried about how a component is used or why it's not working the

Qternet offers a treasure trove of advice, or we can be contacted at help@oomlout.com j

~N

/ COMPONENT DETAILS

LED

(Light Emitting Diode)

Transistor

®

What it Does:

Emits light when a small current is
passed through it. (only in one direction)
Identifying:

Looks like a mini light bulb.

~

No. of Leads:
2 (one longer, this one connects to positive)
Things to watch out for:

- Will only work in one direction

- Requires a current limiting resistor
More Details:

http://ardx.org/LED

What it Does:

The electronic equivalent of a one way
valve. Allowing current to flow in one
direction but not the other.

Identifying:

Usually a cylinder with wires extending from
either end. (and an off center line indicating polarity)

No. of Leads:
2
Things to watch out for:

- Will only work in one direction (current wil
flow if end with the line is connected to ground)

More Details:
http://ardx.org/DIOD

What it Does:

Restricts the amount of current that can
flow through a circuit.

Identifying:

Cylinder with wires extending from either
end. The value is displayed using a color
coding system (for details see next page)

No. of Leads:
2
Things to watch out for:

- Easy to grab the wrong value (double
check the colors before using)
More Details:
http://ardx.org/RESI

What it Does:

Uses a small current to switch or amplify a
much larger current.

Identifying:

Comes in many different packages but you

can read the part number off the package.
(P2N2222AG in this kit and find a datasheet online)

No. of Leads:
3 (Base, Collector, Emitter)
Things to watch out for:
- Plugging in the right way round (also a

current limiting resistor is often needed on the base pin)
More Details:

http://ardx.org/TRAN

Hobby Servo What it Does:

4

DC Motor
06 W

Takes a timed pulse and converts it into
an angular position of the output shaft.
Identifying:

A plastic box with 3 wires coming out one
side and a shaft with a plastic horn out
the top.

No. of Leads:
3
Things to watch out for:
- The plug is not polarized so make sure
it is plugged in the right way.
More Details:
http://ardx.org/SERV

What it Does:

Spins when a current is passed through it.
Identifying:

This one is easy, it looks like a motor.
Usually a cylinder with a shaft coming out
of one end.

No. of Leads:
2
Things to watch out for:
- Using a transistor or relay that is rated
for the size of motor you're using.
More Details:
http://ardx.org/MOTO /

04 ELEC

g

b

Pushbutton

Potentiometer

(COMPONENT DETAILS (CONT.)
Piezo Element

What it Does:

A pulse of current will cause it to click. A
stream of pulses will cause it to emit a
tone.

Identifying:

In this kit it comes in a little black barrel,
but sometimes they are just a gold disc.

electronics
primer

No. of Leads:

2

Things to watch out for:
- Difficult to misuse.

More Details:
http://ardx.org/PIEZ

IC (Integrated Circuit)

What it Does:

Packages any range of complicated
electronics inside an easy to use package.
Identifying:

The part ID is written on the outside of the
package. (this sometimes requires a lot of
light or a magnifying glass to read).

No. of Leads:
2 - 100s (in this kit there is one with 3 (TMP36) and
one with 16 (74HC595)
Things to watch out for:

- Proper orientation. (look for marks showing pin 1)
More Details:

http://ardx.org/ICIC

What it Does:

Completes a circuit when it is pressed.
Identifying:

A little square with leads out the bottom
and a button on the top.

No. of Leads:
4
Things to watch out for:
- these are almost square so can be
inserted 90 degrees off angle.
More Details:
http://ardx.org/BUTT

What it Does:

Produces a variable resistance dependant
on the angular position of the shaft.
Identifying:

They can be packaged in many different
form factors, look for a dial to identify.

No. of Leads:
3
Things to watch out for:
- Accidentally buying logarithmic scale.
More Details:
http://ardx.org/POTE

Photo Resistor

What it Does:

Produces a variable resistance dependant
on the amount of incident light.
Identifying:

Usually a little disk with a clear top and a
curvy line underneath.

No. of Leads:
2
Things to watch out for:
- Remember it needs to be in a voltage
divider before it provides a useful input.
More Details:
http://ardx.org/PHOT

Examples:

ﬁRESISTOR CoLoR CODE

ﬂEAD CLIPPING

Some components in this kit come with very long wire

J
~N

green-blue-brown - 560 ohms
red-red-red - 2 200 ohms (2.2k)

brown-black-orange - 10 000 ohms (10k tolerance

MO - Black
M1 - Brown
M2 - Red

3 - Orange

M5 - Green
M6 - Blue
M7 - Purple
8 - Grey

20% - none
10% - silver
5% - gold

[19 - White

\ 4 - Yellow)

leads. To make them more compatible with a breadboard
a couple of changes are required.

LEDs:

Clip the leads so the long lead is ~10mm (3/8") long and
the short one is ~7mm (9/32").

Resistors:

Bend the leads down so they are 90 degrees to the
cylinder. Then snip them so they are ~6mm

(1/4") long.

Other Components:

Other components may need clipping.

%your discretion when doing so.

.:Getting Started.:.
.:(Blinking LED).:.

"WHAT WE'RE DOING:

LEDs (light emitting diodes) are used in all sorts of clever things
which is why we have included them in this kit. We will start off
with something very simple, turning one on and off, repeatedly,
producing a pleasant blinking effect. To get started, grab the parts
listed below, pin the layout sheet to your breadboard and then plug
everything in. Once the circuit is assembled you'll need to upload the program. To do this plug the
Arduino board into your USB port. Then select the proper port in Tools > Serial Port > (the
comm port of your Arduino). Next upload the program by going to File > Upload to I/O
Board (ctrl+U). Finally, bask in the glory and possibility that controlling lights offers.

If you are having trouble uploading, a full trouble shooting guide can be found here: http://ardx.org/TRBL

\§ J
ﬁ HE CIRCUIT: \

Parts:

- CIRC-01 i 10mm LED
“” Breadboard Sheet @)2(4Pm Header E} x1 /\ Wire

x1

560 Ohm Resistor
Green-Blue-Brown
x1

/ Schematic \

Arduino
pin 13

Ionger lead

LED
(light emitting diode)

resistor (5600hm)
(green-blue-brown)

gnd
(ground) (-)

The Internet

.:download:.
breadboard layout sheet
http://ardx.org/BBLS01
.view:,
assembly video
http://ardx.org/VIDEO1

(CODE (no need to type everything in just click)

File > Examples > 1.Basic > Blink
(example from the great arduino.cc site, check it out for other ideas)

* Blink

* Turns on an LED on for one second, then off for one second,
* repeatedly.

* Created 1 June 2005 By David Cuartielles

* http://arduino.cc/en/Tutorial/Blink

* based on an orginal by H. Barragan for the wiring i/o board

int ledPin = 13; // LED connected to digital pin 13

// The setup() method runs once, when the sketch starts

void setup() // initialize the digital pin as an output:
pinMode(TedPin, OUTPUT); }

// the loop() method runs over and over again,

// as long as the Arduino has power

void Toop()
digitalwrite(ledPin, HIGH);
delay(1000);

digitalwrite(ledPin, LOW);
delay(1000);

// set the LED on

// wait for a second
// set the LED off
// wait for a second

\

(NOT WORKING? (3 things to try)

N

LED Not Lighting Up?
LEDs will only work in one

direction. Try taking it out and

twisting it 180 degrees.
(no need to worry, installing it

backwards does no permanent
harm).

[Program Not Uploading‘
This happens sometimes,

the most likely cause is a
confused serial port, you
can change this in
tools>serial port>

Still No Success?
A broken circuit is no fun, send
us an e-mail and we will get
back to you as soon as we can.

help@oomlout.com

S 2/

\

(MAKING IT BETTER

Changing the pin:

The LED is connected to pin 13 but we can use any of
the Arduino’s pins. To change it take the wire plugged
into pin 13 and move it to a pin of your choice (from 0-
13) (you can also use analog 0-5, analog 0 is 14...)

Then in the code change the line:
int TedPin = 13; -> int ledPin

newpin;
Then upload the sketch: (ctrl-u)

Change the blink time:

Unhappy with one second on one second off?

In the code change the lines:
digitalwrite(ledPin, HIGH);
delay(time on); //(seconds * 1000)
digitalwrite(ledPin, LOW);

delay(time off); //(seconds * 1000)

Control the brightness:
Along with digital (on/off) control the Arduino can control

some pins in an analog (brightness) fashion. (more details on
this in later circuits). To play around with it.

Change the LED to pin 9: (also change the wire)
ledPin = 13; -> int TedPin

9;
Replace the code inside the { }'s of Toop () with this:
analogwrite(ledPin, new number);

(new number) = any number between 0 and 255.
0 = off, 255 = on, in between = different brightness

Fading:
We will use another included example program. To open go to

File > Examples > 3.Analog > Fading

Then upload to your board and watch as the LED fades in and
then out.

MORE, MORE, MORE:

More details, where to buy more parts, where to ask more questions:

http://ardx.org/CIRCO1

.:8 LED Fun.:.
.:Multiple LEDs:.

CIRC-02

N\ WHAT WE'RE DOING:

We have caused one LED to blink, now it's time to up the
stakes. Lets connect eight. We'll also have an opportunity to
stretch the Arduino a bit by creating various lighting
sequences. This circuit is also a nice setup to experiment with
writing your own programs and getting a feel for how the Arduino works.

Along with controlling the LEDs we start looking into a few simple programming methods to
keep your programs small.

for () loops - used when you want to run a piece of code several times.
arrays[] - used to make managing variables easier (it's a group of variables).

ﬁ HE CIRCUIT:

Parts:

CIRC-02 2 Pin Header f§ 5mm Green LED

" Breadboard Sheet &] Wire
x1 x4 x8 /\ "

560 Ohm Resistor
Green-Blue-Brown
x8

/ Schematic \

pin 2 pin 3 pin 4 pin 5

LED

resistor
5600hm
—gnd

pin 6 pin 7 pin 8 pin 9

LED

resistor
5600hm

&

k —gnd

The Internet

.:download:.
breadboard layout sheet
http://ardx.org/BBLS02
view:.
assembly video
http://ardx.org/VIDE02

A\WE

A o oYY
» 5 OHH S

ﬁh CO
Oqﬂ i
EENYER OO0\

&
+

A AMEA WA\
AR A\ IRV IATLY /TS

$) re‘
0
éé

0
%eg

4
,; &
X0

A

00

—

(CODE (no need to type everything in just click)

//LED Pin variables

int ledpins[] = {2,3,4,5,6,7,8,9};
//An array to hold the
//pin each LED 1is connected to
//i.e. LED #0 is connected to pin 2

void setup()

for(int i = 0; i < &; i++){
//this is a loop and will repeat eight times
pinMode (ledPins[i],0UTPUT);

//we use this to set LED pins to output
}

¥oid Toop(Q // run over and over again
oneAfterAnotherNoLoop();
//this will turn on each LED one by
//one then turn each oneoff
//oneAfterAnotherLoop();
//this does the same as onAfterAnotherNoLoop
//but with much Tess typing
//oneonAtATime();
//inAndout();

oneAfterAnotherNoLoop() - will Tight one then
\\‘de1ay for delayTime then Tight the next LED it

CIRC-02

Download the Code from (http://ardx.org/CODE02)
(and then copy the text and paste it into an empty Arduino Sketch)

* will then turn them off

void oneAfterAnotherNoLoop() {
int delayTime = 100;
//the time (in m1111seconds) to pause
//between LEDs
digitalwrite(ledPins[0], HIGH); //Turns on LED #0
//(connected to pin 2)

deTay(delayTime); //waits delayTime milliseconds

digitalwrite(ledPins[7], HIGH); //Turns on LED #7

//(connected to pin 9)

de1ay(de1ayT1me), //waits delayTime milliseconds
//Turns Each LED Of

d1g1ta1Wr1te(1edP1ns[7], LOW) ;

delay(delayTime);

//Turns off LED #7
//waits delayTime milliseconds

(NOT WORKING? (3 things to try)

4 \ [

Some LEDs Fail to Light
It is easy to insert an LED

backwards. Check the LEDs
that aren't working and ensure
they the right way around.

Operating out of sequence
With eight wires it's easy to cross

a couple. Double check that the
first LED is plugged into pin 2 and
each pin there after.

Starting Afresh
Its easy to accidentally

misplace a wire without
noticing. Pulling everything out
and starting with a fresh slate
is often easier than trying to
track down the problem.

N

(MAKING IT BETTER

Switching to loops:

In the loop() function there are 4 lines. The last
three all start with a '//'. This means the line is
treated as a comment (not run). To switch the

program to use loops change the void Toop()
code to:
//oneAfterAnotherNoLoop();
oneAfterAnotherLoop();
//oneOnAtATime();
//inAndout();

Upload the program, and notice that nothing has
changed. You can take a look at the two

functions, each does the same thing, but use
different approaches (hint: the second one uses

\a for loop).

Extra animations:
Tired of this animation? Then try the other two

sample animations. Uncomment their lines and upload
the program to your board and enjoy the new light
animations. (delete the slashes in front of row 3 and then 4)

Testing out your own animations:
Jump into the included code and start changing

things. The main point is to turn an LED on use

digitalwrite(pinNumber, HIGH); then to turn
it off use digitalwrite(pinNumber, LOW); .

Type away, regardless of what you change you won't
break anything.

J

MORE, MORE, MORE:

More details, where to buy more parts, where to ask more questions:

http://ardx.org/CIRC02

.:Spin Motor Spin:.

Sl ..Transistor & Motor:.

'\ WHAT WE'RE DOING:

The Arduino's pins are great for directly controlling small electric f
items like LEDs. However, when dealing with larger items (like a e
toy motor or washing machine), an external transistor is required. A " &
transistor is incredibly useful. It switches a lot of current using a

much smaller current. A transistor has 3 pins. For a negative type (NPN)
transistor, you connect your load to collector and the emitter to ground. Then when a small current
flows from base to the emitter, a current will flow through the transistor and your motor will spin
(this happens when we set our Arduino pin HIGH). There are literally thousands of different types of
transistors, allowing every situation to be perfectly matched. We have chosen a P2N2222AG a rather
common general purpose transistor. The important factors in our case are that its maximum voltage
(40v) and its maximum current (600 milliamp) are both high enough for our toy motor (full details
can be found on its datasheet http://ardx.org/2222).

\ (The 1N4001 diode is acting as a flyback diode for details on why its there visit: http://ardx.org/4001)

ﬂl‘ HE CIRCUIT: \

Parts:

> CIRC-03 Transistor

2 Pin Header P2N2222AG (T092 Wire
:;eadboard Sheet # . e () /\

Diode 2.2k Ohm Resistor

&>
by 8

.
Vi Toy Motor # (1N4001) Red-Red-Red

=

\LQ | x1

x1 x1

/ Schematic \ The transistor will have
Arduino P2N2222AG printed on it

pin 9 (some variations will have
l different pin assignments!)

Transistor
Basel P2N2222AG

CoIIector Emitter

Diode

gnd-
(ground) (-)

+5 volts /

The Internet

.:download:.
breadboard layout sheet
http://ardx.org/BBLS03
view:.
assembly video
http://ardx.org/VIDEO3

if your arduino is resetting you need to install the optional capacitor:.

(CODE (no need to type everything in just click)

Download the Code from (http://ardx.org/CODEO3)
(then simply copy the text and paste it into an empty Arduino Sketch)

CIRC-03

int motorPin = 9; //pin the motor is connected to

void motoronThenoffwithspeed(){
int onSpeed = 200;// a number between
//0 (stopped) and 255 (full speed)
int onTime = 2500;
int offspeed = 50;// a number between
//0 (stopped) and 255 (full speed)
int offTime = 1000;
analogwrite(motorpPin, onSpeed);
/ turns the motor On
deTay(onTime); // waits for onTime milliseconds
analogwrite(motorpPin, offSpeed);
// turns the motor Off
/* deTay(offTime);
* motoronThenoff() - turns motor on then off }
* (notice this code is identical to the code we
used for
* the blinking LED)

void setup() //runs once

pinMode (motorpPin, OUTPUT);
}

void Toop(Q) // run over and over again
motoronThenoff();
//motoronThenoffwithspeed();
//motorAcceleration();

// waits for offTime milliseconds

void motorAcceleration(){
int delayTime = 50; //time between each speed step
for(int 1 = 0; i < 256; i++){
//goes through each speed from 0 to 255
analogwrite(motorpPin, 1i); //sets the new speed
delay(delayTime);// waits for delayTime milliseconds

void motoronThenoff(){
int onTime = 2500; //on time
int offTime = 1000; //off time
digitalwrite(motorpPin, HIGH);

// turns the motor On
delay(onTime); // waits for onTime milliseconds
digitalwrite(motorpPin, LOW);

// turns the motor Off
delay(offTime);// waits for offTime milliseconds

for(int i = 255; i >= 0; i--){
//goes through each speed from 255 to 0
analogwrite(motorPin, i); //sets the new speed
deTay(delayTime);//waits for delayTime milliseconds

J
“\\

\.

(NOT WORKING? (3 things to try)

4 \ [

Motor Not Spinning?
If you sourced your own
transistor, double check with
the data sheet that the pinout
is compatible with a P2N2222A
(many are reversed).

Still No Luck?

If you sourced your own
motor, double check that it will
work with 5 volts and that it
does not draw too much
power.

Still Not Working?
Sometimes the Arduino board
will disconnect from the
computer. Try un-plugging and
then re-plugging it into your
USB port.

2/
“\\

N

(MAKING IT BETTER

Controlling speed:
We played with the Arduino's ability to control the

brightness of an LED earlier now we will use the same
feature to control the speed of our motor. The Arduino
does this using something called Pulse Width
Modulation (PWM). This relies on the Arduino's ability to
operate really, really fast. Rather than directly
controlling the voltage coming from the pin the Arduino
will switch the pin on and off very quickly. In the
computer world this is going from 0 to 5 volts many
times a second, but in the human world we see it as a
voltage. For example if the Arduino is PWM'ing at 50%
we see the light dimmed 50% because our eyes are not
quick enough to see it flashing on and off. The same
feature works with transistors. Don't believe me? Try it

Kout.

MORE, MORE, MORE:

More details, where to buy more parts, where to ask more questions:

http://ardx.org/CIRCO03

In the Toop () section change it to this

// motoronThenoff();
motoronThenoffwithSpeed();

// motorAcceleration();

Then upload the programme. You can change the speeds by

changing the variables onSpeed and offSpeed.

Accelerating and decelerating:
Why stop at two speeds, why not accelerate and decelerate

the motor. To do this simply change the loop() code to read

// motoronThenoff();

// motoronThenoffwithspeed();
motorAcceleration();

Then upload the program and watch as your motor slowly
accelerates up to full speed then slows down again. If you
would like to change the speed of acceleration change the
variable delayTime (larger means a longer acceleration time).

.:A Single Servo:.
.:Servos:.

CIRC-04

" WHAT WE'RE DOING:

Spinning a motor is good fun but when it comes to projects
where motion control is required they tend to leave us
wanting more. The answer? Hobby servos. They are mass
produced, widely available and cost anything from a couple of

dollars to hundreds. Inside is a small gearbox (to make the movement more powerful) and
some electronics (to make it easier to control). A standard servo is positionable from 0 to

180 degrees. Positioning is controlled through a timed pulse, between 1.25 milliseconds (0
degrees) and 1.75 milliseconds (180 degrees) (1.5 milliseconds for 90 degrees). Timing
varies between manufacturer. If the pulse is sent every 25-50 milliseconds the servo will run
smoothly. One of the great features of the Arduino is it has a software library that allows
Qou to control two servos (connected to pin 9 or 10) using a single line of code. j

/ THE CIRCUIT:

~

Parts:

. CIRC-04
* Breadboard Sheet &
x1

x4 b x1

Mini Servo
x1

2 Pin Header 3 Pin Header

/\ Wire

/ Schematic \

Arduino
pin 9

Mini Servo
s

(ground) (-) —

_)

The Internet \

.:download:.
breadboard layout sheet
http://ardx.org/BBLS04
.view:.
assembly video
http://ardx.org/VIDEO4

/

(CODE (no need to type everything in just click)

File > Examples > Servo > Sweep
(example from the great arduino.cc site, check it out for other great ideas)

CIRC-04

// Sweep
// by BARRAGAN <http://barraganstudio.com>

#include <Servo.h> .
Servo myservo; // create_servo object to control a servo
int pos = 0; // variable to store the servo position

void setup()

{
myservo.attach(9); // attaches the servo on pin 9 to the servo object

void Toop() {
for(pos = 0; pos < 180; pos += 1) // goes from O degrees to 180 degrees
{ // 1n steps of 1 degree
// tell servo to go to position in variable 'pos'

myservo.write(pos); 1 " po
// waits 15ms for the servo to reach the position

delay(15);
for(pos = 180; pos>=1; pos-=1) // goes from 180 degrees to O degrees
myservo.write(pos);
delay(15);

// tell servo to go to position in variable 'pos'
// waits 15ms for the servo to reach the position

__ J

(NOT WORKING? (3 things to try) N

4 Y é N

Fits and Starts
If the servo begins moving then
twitches, and there's a flashing
light on your Arduino board, the
power supply you are using is
not quite up to the challenge.
Using a fresh battery instead of
USB should solve this problem.

Still Not Working
A mistake we made a time or
two was simply forgetting to
connect the power (red and
brown wires) to +5 volts and
ground.

Servo Not Twisting?
Even with colored wires it is
still shockingly easy to plug a
servo in backwards. This might
be the case.

S 2/

\

(MAKING IT BETTER

Potentiometer control:

void loop() {

We have yet to experiment with inputs but if you would like
to read ahead, there is an example program File > Servo >
Knob. This uses a potentiometer (CIRC08) to control the
servo. You can find instructions online here:
http://ardx.org/KNOB

Self timing:

While it is easy to control a servo using the Arduino's included
library sometimes it is fun to figure out how to program
something yourself. Try it. We're controlling the pulse directly
so you could use this method to control servos on any of the
Arduino's 20 available pins (you need to highly optimize this
code before doing that).

int servoPin = 9;

void setup(Q{
\} pinMode(servoPin,OUTPUT) ;

int pulseTime = 2100; //(the number of microseconds
//to pause for (1500 90 degrees
// 900 0 degrees 2100 180 degrees)
digitalwrite(servoPin, HIGH);
deTayMicroseconds(pulseTime);
digitalwrite(servoPin, LOW);
) deTay(25);

Great ideas:
Servos can be used to do all sorts of great things, here are a few of

our favorites.

Xmas Hit Counter
http://ardx.org/XMAS

Open Source Robotic Arm (uses a servo controller as well as the Arduino)
http://ardx.org/RARM

Servo Walker
http://ardx.org/SEWA

MORE, MORE, MORE:

More details, where to buy more parts, where to ask more questions:

http://ardx.org/CIRC04

CIRC-05 .:8 More LEDs..
.:74HC595 Shift Register:.

"\ WHAT WE'RE DOING:

Time to start playing with chips, or integrated circuits (ICs) as they like to
be called. The external packaging of a chip can be very deceptive. For
example, the chip on the Arduino board (a microcontroller) and the one we
will use in this circuit (a shift register) look very similar but are in fact rather
different. The price of the ATMega chip on the Arduino board is a few dollars
while the 74HC595 is a couple dozen cents. It's a good introductory chip, and once you're comfortable playing
around with it and its datasheet (available online http://ardx.org/74HC595) the world of chips will be your oyster.
The shift register (also called a serial to parallel converter), will give you an additional 8 outputs (to control LEDs
and the like) using only three Arduino pins. They can also be linked together to give you a nearly unlimited
number of outputs using the same four pins. To use it you “clock in” the data and then lock it in (latch it). To do
this you set the data pin to either HIGH or LOW, pulse the clock, then set the data pin again and pulse the clock
repeating until you have shifted out 8 bits of data. Then you pulse the latch and the 8 bits are transferred to the
shift registers pins. It sounds complicated but is really simple once you get the hang of it.

(for a more in depth look at how a shift register works visit: http://ardx.org/SHIF)

J
ﬂl‘ HE CIRCUIT: \

Parts:
-~ CIRC-05

. Shift Register
. 2 Pin Header @
Breadboard Sheet & 74HC595 Wire
Br 2 74 /\

560 Ohm Resistor
Green-Blue-Brown
x8

a Schematic N\

+5 volts

Red LED P
x8

pin pin pin
4 3 2
74Hi:595

resistor
(5600hm)

LED

+5V

(ground) (-)

data
clock
latch

\ gnd

The Internet

—L— gnd

There is a half moon
cutout, this goes at the top

i

|

.:download:.
breadboard layout sheet
http://ardx.org/BBLS05
view:,
assembly video
http://ardx.org/VIDEQO5

(CODE (no need to type everything in just click)

(copy the text and paste it into an empty Arduino Sketch)

//Pin Definitions

//The 74HC595 uses a protocol called SPI
//Which has three pins

int data = 2;

int clock = 3;

int Tatch 4;

void setup() //runs once

pinMode(data, OUTPUT);
pinMode(cTlock, OUTPUT);
pinMode(latch, OUTPUT); 1}

// run over and over again

int delayTime = 100;
//delay between LED updates
for(int i = 0; i < 256; i++){
updateLEDs (i) ;
delay(delayTime); }

¥01d Toop (O

* updateLEDs() - sends the LED states set
* in value to the 74HC595 sequence

* /
\:Sid updateLEDs (int value){

CIRC-05

Download the Code from (http://ardx.org/CODEOQS5)

digitalwrite(latch, LOW);

//Pulls the chips Tlatch Tow
shiftout(data, clock, MSBFIRST, value);

//Shifts out 8 bits to the shift register

digitalwrite(latch, HIGH);

//Pulls the latch high displaying the data

(NOT WORKING? (3 things to try)

\

The Arduino’s power

LED goes out
This happened to us a couple
of times, it happens when the
chip is inserted backwards. If
you fix it quickly nothing will
break.

Not Quite Working
Sorry to sound like a broken
record but it is probably
something as simple as a
crossed wire.

~
Frustration?

Shoot us an e-mail, this circuit
is both simple and complex at
the same time. We want to
hear about problems you have
so we can address them in
future editions.
help@oomlout.com

N

2/

(MAKING IT BETTER

Doing it the hard way:
An Arduino makes rather complex actions very easy, shifting out data is

one of these cases. However one of the nice features of an Arduino is
you can make things as easy or difficult as you like. Let's try an

example of this. In your loop switch the line:
updateLEDs (i) -> updateLEDsLong(i);
Upload the program and notice nothing has changed. If you look at the

code you can see how we are communicating with the chip one bit at a
time. (for more details http://ardx.org/SPI).

Controlling individual LEDs:

Time to start controlling the LEDs in a similar method as we did in
CIRCO2. As the eight LED states are stored in one byte (an 8 bit value)
for details on how this works try http://ardx.org/BINA. An Arduino is
very good at manipulating bits and there are an entire set of operators
that help us out. Details on bitwise maths (http://ardx.org/BITW).

Our implementation.
Replace the Toop () code with
int delayTime = 100; //the number of milliseconds
//to delay

\

//between LED updates
for(int i = 0; i < 8; i++){
changeLED(i,0N);
delay(delayTime);

for(int i = 0; i < 8; i++){
changeLED(i,0FF);
delay(delayTime);
Uploading this will cause the lights to light up one after another and then off
in a similar manner. Check the code and wikipedia to see how it works, or
shoot us an e-mail if you have questions.

More animations:
Now things get more interesting. If you look back to the code from CIRCO02 (8

LED Fun) you see we change the LEDs using digitalWrite(led, state), this is
the same format as the routine we wrote changeLED(led, state). You can use
the animations you wrote for CIRC02 by copying the code into this sketch and
changing all the digitalWrite()'s to changeLED()'s. Powerful? Very. (you'll also
need to change a few other things but follow the compile errors and it works
itself out).

MORE, MORE, MORE:

More details, where to buy more parts, where to ask more questions:

http://ardx.org/CIRC05

.:Music:.
.:Piezo Elements.:.

CIRC-06

"WHAT WE'RE DOING:

To this point we have controlled light, motion, and
electrons. Let's tackle sound next. But sound is an
analog phenomena, how will our digital Arduino cope?

We will once again rely on its incredible speed which will let it
mimic analog behavior. To do this, we will attach a piezo element to one of the

experimenting with it and get your Arduino playing "Twinkle Twinkle Little Star".

Arduino's digital pins. A piezo element makes a clicking sound each time it is pulsed
with current. If we pulse it at the right frequency (for example 440 times a second to
make the note middle A) these clicks will run together to produce notes. Let's get to

ﬁ HE CIRCUIT:

Parts:

CIRC-06 2 Pin Header

. Piezo Element
Breadboard Sheet . Wire
x1 x4 x1 K\

/ Schematic \

Arduino
pin 9

Piezo
Element

gnd
(ground) (-)

)

The Internet \

.:download:.
breadboard layout sheet
http://ardx.org/BBLS06
view:.
assembly video
http://ardx.org/VIDEO6

\

(CODE (no need to type everything in just click) c I RC — 0 6
Download the Code from (http://ardx.org/CODEOQ6)

(copy the text and paste it into an empty Arduino Sketch)

/t Melody
¥ (c]eft) 2005 D. cuartielles for K3

digitalwrite(speakerprin,
* This example uses a piezo speaker to play melodies. It sends| ow);
* a square wave of the appropriate frequency to the piezo, delayMmicroseconds(tone);
* generating the corresponding tone.
* The calculation of the tones is made following the ¥
* mathematical operation: void p]ayNote(char note int durat10n) {
. . . . B char names[] = { ' 'd' £, 'g', 'a', 'b', 'C' };
: timeHigh = period / 2 = 1 / (2 * toneFrequency) int tones[] = { 1915 1700, 1519 1432, 1275, 1136, 1014, 956
* where the different tones are described as in the table: ; // play the tone corresponding to the note name
frequency period timeHigh fo:f(zﬂsm;s?1?’=l ; 8')1E+)
267 Hz 38 playTone(tones[i], duration);
}
}

void setup() {
pinMode (speakerPin, OUTPUT);

f/http://www.arduino.cc/en/Tutoria]/Me]ody void loop() {

orf(1nt i E ?, i <1 length; i++) {
int speakerPin = 9; if (notes[i] ==
int length = 15 // the number of notes de1ay(beats[1] * tempo); // rest

! } else { . :
2rbggggf§] { ifgg?agffifdd? : /{ i,sp?ce’re?re?enFsz? Zeig playNote(notes[i], beats[i] * tempo);

int tempo = 300; / pause between notes

/
void p1ayT0ne(1nt tone, int duration) { delay(tempo / 2);
for (10n? i =0; i < duration * 1000L; i += tone * 2) {
w

digitalwrite(speakerpPin, HIGH);
\ deTayMicroseconds(tone);

(NOT WORKING? (3 things to try)

q \

No Sound W Thi : Tired of Twinkle Twinkle
Given the size and shape of Can’t Think While the Little Star?

the piezo element it is easy to] Telﬁ’dyt:]s P_Iayurg? " The code is written so you can
. . ust pull up the piezo elemen .
miss the right holes on the putup P easily add your own songs,

breadboard. Try double whilst you think, upload yo-ur check out the code below to
o program then plug it back in.
checking its placement. get started.

S 4

G’lAKING IT BETTER R

Playing with the speed: char names[] = { 'c', 'd", 'e', 'f', 'g', 'a', 'b',

The timing for each note is calculated based on int tones[] = { 1915, 1700, 1519, 1432, 1275, 1136,

variables, as such we can tweak the sound of each note 1014, 956 };

or the timing. To change the speed of the melody you Composing your own melodies:

need to change only one line. The program is pre-set to play "Twinkle Twinkle Little Star'

ghnazgtzei??c? aTarZ%cr) ;ur_n_b_e? t(1) r;lt;v;c (tar:nepgweTod(ync?c‘;vw:,) however the Way_ ftis progr_ammec_i makes changing the so.ng
easy. Each song is defined in one int and two arrays, the int

or a smaller number to speed it up.))
Tuning the notes: Tength defines the number of notes, the first array

If you are worried about the notes being a little out of notes[] defines each note, and the second beats[]

tune this can be fixed as well. The notes have been defines how long each note is played. Some Examples:
; Twinkle Twinkle Little Star

calculated based on a formula in the comment block at int Tength = 15;

the top of the program. But to tune individual notes just char notes[] = {"ccggaagffeeddc "};
. . . int beats[] = {1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1,
adjust their values in the tones[] array up or down 1,1, 2, 4%};

until they sound right. (each note is matched by its Happy Birthday (first line)
. . int Tength = 13;
name in the names[] (array ie. c = 1915) char notes[] = {"ccdcfeccdcgf "};
\ int beats(] = {1,1,1,1,1,2,1,1,1.1,1,2,4};

MORE, MORE, MORE:

More details, where to buy more parts, where to ask more questions:

http://ardx.org/CIRC06

.:Button Pressing:.
.:Pushbuttons:.

'\ WHAT WE'RE DOING:

Up to this point we have focused entirely on outputs, time to

get our Arduino to listen, watch and feel. We'll start with a

simple pushbutton. Wiring up the pushbutton is simple. There is
one component, the pull up resistor, that might seem out of place.
This is included because an Arduino doesn't sense the same way we do (ie button pressed,
button unpressed). Instead it looks at the voltage on the pin and decides whether it is HIGH
or LOW. The button is set up to pull the Arduino's pin LOW when it is pressed, however, when
the button is unpressed the voltage of the pin will float (causing occasional errors). To get the
Arduino to reliably read the pin as HIGH when the button is unpressed, we add the pull up
resistor.

\ (note: the first example program uses only one of the two buttons)

J
ﬂl‘ HE CIRCUIT: \

Parts:

CIRC-07 2 Pin Header r--._’_.-; Pushbutton

" Breadboard Sheet & X2 Wire
x1 x4 1‘1 X /\

10k Ohm Resistor 5, 560 Ohm Resistor d
Brown-Black-Orange Green-Blue-Brown . Red LED
x2 x1 x1

/ Schematic \

Arduino
pin 2 pin 3
Arduino T+5volts |
pin 13

AAA AAA
\AAmAA A4

resistor
LED (10k ohm)

] A

resistor pushbutton
(5600hm)

S

—

\T g;l;‘o(and)) /

/ The Internet

.:download:.
breadboard layout sheet
http://ardx.org/BBLS07
sview:,
assembly video
http://ardx.org/VIDEQO?7

.

N\

(CODE (no need to type everything in just click)

File > Examples > 2.Digital > Button
(example from the great arduino.cc site, check it out for other great ideas)

CIRC-07

* Button
* by DojoDave <http://www.0j0.org>

* Turns on and off a light emitting diode(LED) connected to digital
* pin 13, when pressing a pushbutton attached to pin 7.
* http: //www arduino.cc/en/Tutorial/Button

int ledPin = 13;
int inputPin = 2;
int val = 0;
void setup() {

pinMode(ledPin,
pinMode(inputPin,

// choose the pin for the LED
// choose the input pin (for a pushbutton)
/ variable for reading the pin status

declare LED as output

/
OUTPUT) ; //
// declare pushbutton as input

INPUT);

void Toop(){
val = digitalRead(inputPin); // read input value
if (val == HIGH) { // check if the input is HIGH
) d}'git?WriteGedPin, Low); // turn LED OFF
else

digitalwrite(ledPin, HIGH); // turn LED ON

\._ Y,

(NOT WORKING? (3 things to try) R

4 Y é N

Light Not Turning On Light Not Fading
The pushbutton is square A bit of a silly mistake we
and because of this it is easy constantly made, when you
to put it in the wrong way. switch from simple on off to
Give it a 90 degree twist and fading remember to move the
see if it starts working. LED wire from pin 13 to pin 9.

Underwhelmed?
No worries these circuits are all

super stripped down to make

playing with the components
easy, but once you throw them

together the sky is the limit.

2/
“\\

\J

(MAKING IT BETTER

On button off button:

Fading up and down:

The initial example may be a little underwhelming (ie. I
don't really need an Arduino to do this), let's make it a
little more complicated. One button will turn the LED on
the other will turn the LED off. Change the code to:

int ledPin = 13;
int inputPinl = 3;
int inputPin2 = 2;

// choose the pin for the LED
// button 1
// button 2

void setup() {
pinMode(ledPin, OUTPUT); // declare LED as output
pinMode(inputPinl, INPUT); // make button 1 an input
pinMode (inputPin2, INPUT), // make button 2 an input

vo1d Toop({
f (digitalrRead(inputPinl) == Low) {
digitalwrite(ledPin, LOW); // turn LED OFF
} else if (d1g1ta1Read(1nputPin2) == Low) {
digitalwrite(ledPin, HIGH); // turn LED ON

}
Upload the program to your board, and start toggling the

\LED on and off.

Lets use the buttons to control an analog signal. To do this
you will need to change the wire connecting the LED from pin
13 to pin 9, also change this in code.

int ledPin = 13; ----> int ledPin = 9;
Next change the loop() code to read.

int value = 0;

void Toop(){
if (digitalRead(inputPinl) == Low) { value--; }
else if (d1g1ta1Read(1nputP1n2) == Low) { va1ue++ }
value = constrain(value, 0, 255);
analogwrite(ledpPin, value);
delay(10);

Changing fade speed:
If you would like the LED to fade faster or slower, there is only

one line of code that needs changing;
delay(10); ----> delay(new #);

To fade faster make the number smaller, slower requires a
larger number.

J

MORE, MORE, MORE:

More details, where to buy more parts, where to ask more questions:

http://ardx.org/CIRC07

.:Twisting:.

CIRC-03)
..Potentiometers:.

"WHAT WE'RE DOING:

Along with the digital pins, the Arduino also has 6
pins which can be used for analog input. These
inputs take a voltage (from 0 to 5 volts) and convert

it to a digital number between 0 (0 volts) and 1024 (5 volts) (10 bits of

(also called a variable resistor). When it is connected with 5 volts across its
outer pins the middle pin will read some value between 0 and 5 volts

\can then use the returned values as a variable in our program.

resolution). A very useful device that exploits these inputs is a potentiometer

dependent on the angle to which it is turned (ie. 2.5 volts in the middle). We

ﬁ' HE CIRCUIT:

Parts:

< CIRC-08 . i Potentiometer
. Breadboard Sheet & 2 Pin Header ¢ 10k ohm
T x4
x1 x1

_ 560 Ohm Resistor
Green LED] Green-Blue-Brown
x1 x1

/ Schematic \

Arduino +5 \f?lts

pin 13

Arduino

. analog
Potentiometer pin 0

LED

N (light (% I
emittin —
diode)

resistor (5600hm)
(blue-green-brown)

—_—
—— gnd
\- (ground) ()

The Internet

.:download:.
breadboard layout sheet
http://ardx.org/BBLS08
view:,
assembly video
http://ardx.org/VIDEOS

J
~N

(c

ODE (no need to type everything in just click)

/* Analog Input

digital pin 13.
* The
* analogRead() .

* Created by David Cuartielles

* Modified 16 Jun 2009

* By Tom Igoe
*/http://arduino.cc/en/Tutoria1/Ana1ogInput

int sensorPin = 0;
int ledPin = 13;
int sensorvalue = 0;

void setup() {
pinMode(ledPin, OUTPUT);

void Toop() {
sensorvValue = analogRead(sensorPin
diglgitamrite(]edpin, HIGH);
delay(sensorvalue);
digitalwrite(ledPin, LOW);
delay(sensorvalue);

)i//
//
//
//
//

* Demonstrates analog input by reading an analog sensor on analog
* pin 0 and turning on and off a Tight emitting diode(LED)

CIRC-08

File > Examples > 3.Analog > AnalogInput
(example from the great arduino.cc site, check it out for other great ideas)

connected to

amount of time the LED will be on and off depends on the value obtained by

// select the input pin for the potentiometer
// select_the pin for the LED)
// variable to store the value coming from the sensor

//declare the ledPin as an OUTPUT:

value from the sensor:

TedPin on

program for <sensorvalue> milliseconds:
ledPin off:

program for for <sensorvalue> milliseconds:

(NOT WORKING? (3 things to try)

() (
Sporadically Working
This is most likely due to a
slightly dodgy connection with
the potentiometer's pins. This
can usually be conquered by
taping the potentiometer down.

Not Working
Make sure you haven't
accidentally connected the
potentiometer's wiper to digital
pin 2 rather than analog pin 2.
(the row of pins beneath the
power pins)

Still Backward
You can try operating the
circuit upside down.
Sometimes this helps.

N

(MAKING IT BETTER

Threshold switching:
Sometimes you will want to switch an output when a value
exceeds a certain threshold. To do this with a
potentiometer change the Toop () code to.
void Toop() {

int threshold = 512;

if(analogrRead(sensorPin) > threshold){
digitalwrite(ledPin, HIGH);}

else{ digitalwrite(ledPin, LOW);}
This will cause the LED to turn on when the value is above
512 (about halfway), you can adjust the sensitivity by
changing the threshold value.
Fading:
Let’s control the brightness of an LED directly from the
potentiometer. To do this we need to first change the pin
the LED is connected to. Move the wire from pin 13 to pin

9 and change one line in the code.
k int ledPin = 13; ----> int ledPin = 9;

Then change the loop code to.
void Toop() {

int value = analogRead(potPin) / 4;

analogwrite(ledPin, value);
Upload the code and watch as your LED fades in relation to
your potentiometer spinning. (Note: the reason we divide the
value by 4 is the analogRead() function returns a value from 0
to 1024 (10 bits), and analogWrite() takes a value from 0 to
255 (8 bits))
Controlling a servo:
This is a really neat example and brings a couple of circuits
together. Wire up the servo like you did in CIRC-04, then open
the example program Knob (File > Examples > Servo >

Knob), then change one line of code.

int potpin = 0; ----> int potpin = 2;
Upload to your Arduino and then watch as the servo shaft turns
as you turn the potentiometer.

J

MORE, MORE, MORE:

More details, where to buy more parts, where to ask more questions:

http://ardx.org/CIRC08

.:Light:.
..Photo Resistors:.

CIRC-09

'\ WHAT WE'RE DOING:

Whilst getting input from a potentiometer can be useful
for human controlled experiments, what do we use
when we want an environmentally controlled

experiment? We use exactly the same principles but instead
of a potentiometer (twist based resistance) we use a photo resistor (light based
resistance). The Arduino cannot directly sense resistance (it senses voltage) so we
set up a voltage divider (http://ardx.org/VODI). The exact voltage at the sensing
pin is calculable, but for our purposes (just sensing relative light) we can
experiment with the values and see what works for us. A low value will occur when
\the sensor is well lit while a high value will occur when it is in darkness.

ﬂl‘ HE CIRCUIT:

Parts:

- CIRC-09
" Breadboard Sheet &
x1
10k Ohm Resistor . 560 Ohm Resistor
Brown-Black-Orange Green-Blue-Brown 8
x1 x1

x4 I | x1

2 Pin Header . Photo-Resistor

/\ Wire

/ Schematic \

Arduino +5 volts

< photo
‘C resistor
Arduino|
analog
pin 0
resistor resistor
(5600hm) < (10k ohm)

N
G

Op

‘\&\"é\;

The Internet

.:download:.
breadboard layout sheet
http://ardx.org/BBLS09
sview:,
assembly video
http://ardx.org/VIDEQ9

00
5

&

0
<
Ja
)

9
N q;o
&
0
%()

1§ AN
¢,
°é%é2¢h ééao
Gééé A
N
<0
9
AN
(DA
NN

()
f“é‘ (0

¢
€

g
7
<)
%@é
& &é
8,

3
5
\&
N

€
&

)
N\

/g
¢
‘0
&
\&&

J
\

(c

ODE (no need to type everything in just click)

(copy the text and paste it into an empty Arduino Sketch)
/%
* A simple programme that will change the
* dintensity of an LED based on the amount of

* Tight incident on the photo resistor.
*/

//PhotoResistor Pin
int 1ightPin = 0; //the analog pin the
//photoresistor is
//connected to
//the photoresistor is not
//calibrated to any units so
//this 1is simply a raw sensor
//value (relative light)
//LED Pin
int ledPin = 9;//the pin the LED is connected to
//we are controlling brightness so
//we use one of the PwM (pulse
//width modulation pins)

void setup()

pinMode(TedPin, OUTPUT); //sets the led pin to

CIRC-09

Download the Code from (http://ardx.org/CODEQ9)

//output
}

/:’:

* Toop() - this function will start after setup
* finishes and then repeat

:./
void Toop()
{

int lightLevel = analogRead(lightPin); //Read the
// Tightlevel
TightLevel = map(lightLevel, 0, 900, 0, 255);
//adjust the value 0 to 900 to O to 255
TightLevel = constrain(lightLevel, 0, 255);
//make sure the value 1is betwween 0 and 255
analogwrite(TedrPin, TightLevel); //write the value

}

J

(NOT WORKING? (3 things to try)

“\\

() (
LED Remains Dark
This is a mistake we continue
to make time and time again,
if only they could make an LED
that worked both ways. Pull it
up and give it a twist.

It Isn't Responding to
Changes in Light.

Given that the spacing of the
wires on the photo-resistor is
not standard, it is easy to
misplace it. Double check its in

the right place. try.

N N
Still not quite working?
You may be in a room which is
either too bright or dark. Try
turning the lights on or off to
see if this helps. Or if you have
a flashlight near by give that a

N

2/

(MAKING IT BETTER

Reverse the response:

Perhaps you would like the opposite response. Don't

worry we can easily reverse this response just change:
analogwrite(ledPin, lightLevel); ---->
analogwrite(ledpPin, 255 - TightLevel);

Upload and watch the response change:

Night light:
Rather than controlling the brightness of the LED in
response to light, let's instead turn it on or off based on

a threshold value. Change the loop() code with.
void Toop(){
int threshold = 300;
if(analogread(1ightPin) > threshold){
digitalwrite(ledPin, HIGH);
}else{
digitalwrite(ledPin, LOW);

}

_

“\\

Light controlled servo:
Let's use our newly found light sensing skills to control a

servo (and at the same time engage in a little bit of Arduino
code hacking). Wire up a servo connected to pin 9 (like in
CIRC-04). Then open the Knob example program (the same
one we used in CIRC-08) File > Examples > Servo >
Knob. Upload the code to your board and watch as it works

unmodified.
Using the full range of your servo:
You'll notice that the servo will only operate over a limited

portion of its range. This is because with the voltage dividing
circuit we use the voltage on analog pin 0 will not range from
0 to 5 volts but instead between two lesser values (these
values will change based on your setup). To fix this play with
the val = map(val, 0, 1023, 0, 179); line. For hints on what to
do visit http://arduino.cc/en/Reference/Map .

MORE, MORE, MORE:

More details, where to buy more parts, where to ask more questions:

http://ardx.org/CIRC09

CIRC-10 .. Temperature:.

.:TMP36 Precision Temperature Sensor:.

/ WHAT WE'RE DOING:

What's the next phenomena we will measure with our
Arduino? Temperature. To do this we'll use a rather
complicated IC (integrated circuit) hidden in a package
identical to our P2N2222AG transistors. It has three pin's,

ground, signal and +5 volts, and is easy to use. It outputs 10
millivolts per degree centigrade on the signal pin (to allow measuring temperatures below
freezing there is a 500 mV offset eg. 25° C = 750 mv, 0° C = 500mV). To convert this from the
digital value to degrees, we will use some of the Arduino's maths abilities. Then to display it
we'll use one of the IDE's rather powerful features, the debug window. We'll output the value
over a serial connection to display on the screen. Let's get to it.

One extra note, this circuit uses the Arduino IDE's serial monitor. To open this, first upload the
program then click the button which looks like a square with an antennae.

The TMP36 Datasheet:
Qttp://ardx.org/TMP36

ﬁ HE CIRCUIT:
/ Parts:

CIRC-10 2 Pin Header

7 Breadboard Sheet # <4

s x1

TMP36

\ M Iimperature Sensor/\ Wire
/ Schematic \

Arduino
analog ®+5 volts

pin 0

i ;I;Ir\gi?) s the chip will have
s;gnr:ja temperature Ak i - TMP36 printed on it
sensor) S . Y
< Z ~ S 4 T

—1L__ gnd

\ — (ground)y
/ The Internet\

.:download:.
breadboard layout sheet
http://ardx.org/BBLS10
view:,
assembly video
http://ardx.org/VIDE10

)
26 W

(c

ODE (no need to type everything in just click)

(copy the text and paste it into an empty Arduino Sketch)
P

Arduino Experimentation Kit Example Code
CIRC-10 .: Temperature :.

A simple program to output the current temperature
to the IDE's debug window
For more details on this circuit:

//TMP36 Pin variables
int temperaturepPin = 0;//the analog pin the TMP36's
//vout pin is connected to
//the resolution is
//10 mv / degree centigrade
//(500 mv offset) to make
//negative temperatures an
option
void setup()
serial.begin(9600); //Start the serial connection
//with the computer
//to view the result open the
//serial monitor
//1ast button beneath the file
//bar (looks Tlike a box with an
//antenna)

}

_

CIRC-10

Download the Code from (http://ardx.org/CODE10)

void Toop(Q)

// run over and over again

float temperature = getvoltage(temperaturepPin);
//getting the voltage reading from the
//temperature sensor

temperature = (temperature -
mv

.5) * 100;//converting from 10
//per degree wit 500 mv offset to
//degrees ((volatge - 500mv) times

100)

Serial.printin(temperature); //printing the result

delay(1000); //waiting a second

}

* getvoltage() - returns the voltage on the analog input

* defined by pin

*

float getvoltage(int pin){

return (analogRead(pin) * .004882814);//converting from a 0

//to 1024 digital range
// to 0 to 5 volts
//(Ceach 1 reading equals ~ 5

millivolts

(NOT WORKING? (3 things to try)

4)

Nothing Seems to Happen
This program has no outward

indication it is working. To see
the results you must open the

Arduino IDE's serial monitor.
(instructions on previous page)

[Gibberish is Displayed |
This happens because the serial
monitor is receiving data at a
different speed than expected.
To fix this, click the pull-down
box that reads "*** baud" and
change it to "9600 baud".

Temperature Value is
Unchanging
Try pinching the sensor with
your fingers to heat it up or
pressing a bag of ice against it
to cool it down.

N

2/

(MAKING IT BETTER

Outputting voltage:
This is a simple matter of changing one line. Our

sensor outputs 10mv per degree centigrade so to get
voltage we simply display the result of getVoltage().

delete the line ~ temperature = (temperature - .5) * 100;

Outputting degrees Fahrenheit:
Again this is a simple change requiring only maths. To

go degrees C ----> degrees F we use the formula:
(F=C*1.8)+ 32)
add the line
temperatu re
(((temperature - .5) * 100)*1.8) + 32;
before Serial.printin(temperature);

More informative output:
Let's add a message to the serial output to make what

\is appearing in the Serial Monitor more informative. To

“\\

do this first revert to the original code then change:
Serial.printin(temperature);
—_————>
Serial.print(temperature);
Serial.printin(" degrees centigrade™);

The change to the first line means when we next output it
will appear on the same line, then we add the informative

text and a new line.
Changing the serial speed:
If you ever wish to output a lot of data over the serial line

time is of the essence. We are currently transmitting at 9600
baud but much faster speeds are possible. To change this

change the line:
Serial.begin(9600); ----> Serial.begin(115200);

Upload the sketch turn on the serial monitor, then change
the speed from 9600 baud to 115200 baud in the pull down
menu. You are now transmitting data 12 times faster.

MORE, MORE, MORE:

More details, where to buy more parts, where to ask more questions:

http://ardx.org/CIRC10

.:Larger Loads:.
.:Relays.:.

"\ WHAT WE'RE DOING:

The final circuit is a bit of a test. We combine what we learned
about using transistors in CIRCO3 to control a relay. A relay is
an electrically controlled mechanical switch. Inside the little
plastic box is an electromagnet that, when energized, causes a
switch to trip (often with a very satisfying clicking sound). You can buy relays that vary in size
from a quarter of the size of the one in this kit up to as big as a fridge, each capable of
switching a certain amount of current. They are immensely fun because there is an element of
the physical to them. While all the silicon we've played with to this point is fun sometimes you
may just want to wire up a hundred switches to control something magnificent. Relays give you
the ability to dream it up then control it with your Arduino. Now to using today's technology to

\control the past. (The 1N4001 diode is acting as a flyback diode, for details on why it's there visit: http://ardx.org/4001) j

ﬂl' HE CIRCUIT: \
/Parts:

. CIRC-11 Diode Transistor
 Breadboard Sheet (1N4001) P2N2222AG (T092) .
x1 x1 T x1

-
2.2k Ohm Resistor 560 Ohm Resistor

Red-Red-Red "1 Green-Blue-Brown [} GreenLED 8
x1 x2 x1

2 Pin Header
\"' x4 /
Schematic
e I

Arduino
pin 2

O@*

resistor
(2.2kohm)

Transistor
Base| P2N2222AG
the transistor will have

s X P2N2222AG printed on it
L o Diode 4| (some variations will have
T—No;fm £ (flyback) giees the pin assignment reversed)

% ‘ |+5 volts
N
(ground) (-)"—

The Internet

.:download:.
breadboard layout sheet
http://ardx.org/BBLS11
Sview:,
assembly video
http://ardx.org/VIDE11

(CODE (no need to type everything in just click)

File > Examples > 1.Basic > Blink
(example from the great arduino.cc site, check it out for other great ideas)

* Blink
* The basic Arduino example. Turns on an LED on for one second,
* then off for one second, and so on... We use pin 13 because,

* depending on your Arduino board, it has either a built-in LED
* or a built-in resistor so that you need only an LED.

‘f‘/http://www. arduino.cc/en/Tutorial/BTlink

int ledPin = 2’ // Fedede e dedede ek CHANGE TO PIN 2 ##dddededddddd
void setup() // run once, when the sketch starts

pinMode(TedPin, OUTPUT); // sets the digital pin as output

\{/oid Toop() // run over and over again

digitalwrite(ledPin, HIGH); // sets the LED on
delay(1000); // waits for a second
digitalwrite(ledPin, LOW); // sets the LED off
delay(1000) ; // waits for a second

_ /

(NOT WORKING? (3 things to try) N

f 1 (Not Quite Working

No Clicking Sound The included relays are
The transistor or coil portion of designed to be soldered rather

the circuit isn't quite working. than used in a breadboard. As

Check the transistor is plugged such you may need to press it
in the right way. in to ensure it works (and it

may pop out occasionally).

S 2/
\

Nothing Happens
The example code uses pin 13
and we have the relay
connected to pin 2. Make sure
you made this change in the
code.

(MAKING IT BETTER

Watch the Back-EMF Pulse
Replace the diode with an LED. You'll see it blink each time it “snubs” the coil voltage spike when it Arduind

turns off. pin 2

resistor

Controlling a Motor (2.2kohm)

In CIRC-03 we controlled a motor using a transistor. However if you want to control a larger motor a
relay is a good option. To do this simply remove the red LED, and connect the motor in its place Transistor
(remember to bypass the 560 Ohm resistor). e § PIN2222AG

—
3

Controlling Motor Direction
A bit of a complicated improvement to finish. To control the direction of spin of]_.‘\ —[:'

NO NC com g

a DC motor we must be able to reverse the direction of current flow through it. l—',-h
To do this manually we reverse the leads. To do it electrically we require Jf
something called an h-bridge. This can be done using a DPDT relay to control
the motor's direction, wire up the following circuit. It looks complicated but can (gg?oﬂnd) ()_T_
Kbe accomplished using only a few extra wires. Give it a try.

+5 volts

MORE, MORE, MORE:

More details, where to buy more parts, where to ask more questions:

http://ardx.org/CIRC11

www.oomlout.com

This work is licenced under the Creative Commons
Attribution-Share Alike 3.0 Unported License. To view a copy
of this licence, visit http://creativecommons.org/licenses/by-
sa/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California 94105, USA.

& 0o

(ARDX)

experimentation kit for arduino

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32

