
ARDX
experimentation kit for arduino

Experimenter’s
Guide

for Arduino

(ARDX)

A Few Words

ABOUT THIS KIT

The overall goal of this kit is fun. Beyond this, the aim is to get

you comfortable using a wide range of electronic components

through small, simple and easy circuits. The focus is to get each

circuit working then giving you the tools to figure out why. If you

encounter any problems, want to ask a question, or would like to

know more about any part, extra help is only an e-mail away help@oomlout.com.

ABOUT .: OOMLOUT :.

We’re a plucky little design company focusing on producing

“delightfully fun open source products”
To check out what we are up to

http://www.oomlout.com

ABOUT PROBLEMS

We strive to deliver the highest level of quality in each and every thing we produce. If you ever find an

ambiguous instruction, a missing piece, or would just like to ask a question, we’ll try our best to help out.

help@oomlout.com
(we like hearing about problems it helps us improve future versions)

Thanks For Choosing .:oomlout:.

All of .:oomlout:.'s projects are open source. What does this mean? It means everything

involved in making this kit, be it this guide, 3D models, or code is available for free

download. But it goes further, you're also free to reproduce and modify any of this

material, then distribute it for yourself. The catch? Quite simple, it is released under a

Creative Commons (By - Share Alike) license. This means you must credit .:oomlout:. in

your design and share your developments in a similar manner. Why? We grew up learning

and playing with open source software and the experience was good fun, we think it

would be lovely if a similar experience was possible with physical things.

More details on the Creative Commons CC (By - Share Alike) License can be found at

http://ardx.org/CCLI

ABOUT OPEN SOURCE HARDWARE

01

TBCN
table of contents.: WHERE TO FIND EVERYTHING :.

Before We Start

{ASEM} Assembling the Pieces 02

{INST} Installing the Software 03

{PROG} A Small Programming Primer 04

{ELEC} A Small Electronics Primer 06

The Circuits

{CIRC01} Getting Started - (Blinking LED) 08

{CIRC02} 8 LED Fun - (Multiple LEDs) 10

{CIRC03} Spin Motor Spin - (Transistor and Motor) 12

{CIRC04} A Single Servo - (Servos) 14

{CIRC05} 8 More LEDs - (74HC595 Shift Register) 16

{CIRC06} Music - (Piezo Elements) 18

{CIRC07} Button Pressing - (Pushbuttons) 20

{CIRC08} Twisting - (Potentiometers) 22

{CIRC09} Light - (Photo Resistors) 24

{CIRC10} Temperature - (TMP36 Temperature Sensor) 26

{CIRC11} Larger Loads - (Relays) 28

02

01 ASEM
assembling the

pieces

Breadboard
x1

Arduino
x1

3mm x 10mm bolt
x2

3mm nut
x4

Arduino Holder
x1

.: PUTTING IT TOGETHER :.

.: For an introduction to what an Arduino is, visit :.
.: http://ardx.org/INTR :.

Vista, Seven

Step 5: Add new Hardware

Skip searching the internet
(click the next box when prompted to do so)

Install from a specific location
(click “Install from a list or specific location (Advanced)")

Choose the Location
Duemilanove Board

c:\program files\arduino-00

c:\program files\arduino-00

rr\drivers\FTDI USB Drivers\
Uno Board

rr\drivers\

Finished

Run Device Manager
Start > Run > devmgmt.msc

Choose the Arduino
Other Devices > Arduino Uno (Uno)

Update Driver
click “Update Driver”

Select Driver
click “Browse My Computer for Driver Software”

c:\program files\arduino-00rr\drivers\

Finished 03

02 INST
installing

(software and hardware)

.: NOTE: :.
.: Encountering problems? :.

.: Would like more details? Using Linux? :.
.: http://ardx.org/LINU :.

Step 1: Download the software
Go to

http://arduino.cc/en/Main/Software
download the software for your operating system

Windows XP Mac OSX

Step 2: Unzip the Software
Unzip

arduino-00 -win.zip
Recommended Path

c:\Program Files\

rr(rr- version #)

Step 3: Shortcut Icon
Open

c:\program files\arduino-00

Right Click
Arduino.exe (send to>Desktop (create shortcut))

rr\ rr- version #) (

Step 4: Plug In Your Arduino
Plug your Arduino in:

Using the included USB cable, plug your Arduino
board into a free USB port.

Wait for a box to pop up

Step 5: Add new Hardware

.: INSTALLING THE IDE :.
This is the program used to write code for the Arduino. It may
seem a little daunting at first but once you have it installed and

start playing around, its secrets will reveal themselves.

Step 5: Plug In Your Arduino
Plug your Arduino in:

Using the included USB cable, plug your Arduino
board into a free USB port.

Finished

Step 2: Open The .dmg
Open (mount)

arduino-00 -mac.dmg rr(rr- version #)

Step 4: Install Drivers
.:Duemilanove Boards Only:.

Go to
"Arduino" device

FTDI Drivers for Intel Macs (_ _).pkg
(FTDI Drivers for PPC Macs (_ _).pkg

Restart

Double Click & Install
rrrr

rrrr

Step 3: Copy The Application
Go to

"Arduino" (in the devices section of finder)

Move
"Arduino" Application to the

"Applications" folder

// (single line comment)

It is often useful to write notes

to yourself as you go along

about what each line of code

does. To do this type two

forward slashes and everything

until the end of the line will be

ignored by your program.

{ } (curly brackets)

Used to define when a block

of code starts and ends (used

in functions as well as loops).

04

03 PROG
programming

primer

.:A Small Programming Primer:.

The Arduino is programmed in the C language. This is a quick little primer targeted at people

who have a little bit of programing experience and just need a briefing on the idiosyncracies of C

and the Arduino IDE. If you find the concepts a bit daunting, don't worry, you can start going

through the circuits and pick up most of it along the way. For a more in-depth intro, the

Arduino.cc website is a great resource.

STRUCTURE

void setup(){ }
All the code between the two

curly brackets will be run once

when your Arduino program

first runs.

Each Arduino program

(often called a sketch) has

two required functions

(also called routines).

void loop(){ }
This function is run after setup

has finished. After it has run

once it will be run again, and

again, until power is removed.

SYNTAX

; (semicolon)

Each line of code must be

ended with a semicolon (a

missing semicolon is often

the reason for a program

refusing to compile).

One of the slightly

frustrating elements of C is

its formatting requirements

(this also makes it very

powerful). If you remember

the following you should be

alright.

/* */(multi line comment)

If you have a lot to say you can

span several lines as a

comment. Everything between

these two symbols will be

ignored in your program.

A program is nothing more

than instructions to move

numbers around in an

intelligent way. Variables are

used to do the moving.

long (long)
Used when an integer is not

large enough. Takes 4 bytes (32

bits) of RAM and has a range

between -2,147,483,648 and

2,147,483,647.

int (integer)
The main workhorse, stores a

number in 2 bytes (16 bits).

Has no decimal places and will

store a value between -32,768

and 32,767.

boolean (boolean)
A simple True or False

variable. Useful

because it only

uses one bit of

RAM.

char (character)
Stores one character using the

ASCII code (ie 'A' = 65). Uses

one byte (8 bits) of RAM. The

Arduino handles strings as an

array of char’s.

float (float)
 Used for floating point math

(decimals). Takes 4 bytes (32

bits) of RAM and has a range

between -3.4028235E+38

and 3.4028235E+38.

ARDUINO PROGRAMMING IN BRIEF

VARIABLES

05

03 PROG
programming

primer

MATHS OPERATORS

= (assignment) makes something equal to something else (eg. x

= 10 * 2 (x now equals 20))
% (modulo) gives the remainder when one number is divided by

another (ex. 12 % 10 (gives 2))
+ (addition)
- (subtraction)
* (multiplication)
/ (division)

Operators used for

manipulating numbers.

(they work like simple

maths).

COMPARISON OPERATORS

== (equal to) (eg. 12 == 10 is FALSE or 12 == 12 is TRUE)

!= (not equal to) (eg. 12 != 10 is TRUE or 12 != 12 is FALSE)

< (less than) (eg. 12 < 10 is FALSE or 12 < 12 is FALSE or 12 < 14 is TRUE)

> (greater than) (eg. 12 > 10 is TRUE or 12 > 12 is FALSE or 12 > 14 is

FALSE)

Operators used for

logical comparison.

CONTROL STRUCTURE

if(condition){ }
else if(condition){ }
else { }

This will execute the code between

the curly brackets if the condition

is true, and if not it will test the

else if condition if that is also

false the else code will execute.

Programs are reliant on

controlling what runs

next, here are the basic

control elements (there

are many more online).

for(int i = 0; i <
#repeats; i++){ }

Used when you would like to

repeat a chunk of code a number

of times (can count up i++ or

down i-- or use any variable)

DIGITAL

digitalWrite(pin, value);

Once a pin is set as an OUTPUT,

it can be set either HIGH (pulled

to +5 volts) or LOW (pulled to

ground).

pinMode(pin, mode);

Used to set a pin's mode, pin

is the pin number you would

like to address 0-19 (analog 0-

5 are 14-19). The mode can

either be INPUT or OUTPUT.

int digitalRead(pin);

Once a pin is set as an INPUT

you can use this to return

whether it is HIGH (pulled to

+5 volts) or LOW (pulled to

ground).

ANALOG

int analogWrite(pin,
 value);
Some of the Arduino's pins support
pulse width modulation (3, 5, 6, 9, 10,
11). This turns the pin on and off very
quickly making it act like an analog
output. The value is any number
between 0 (0% duty cycle ~0v) and
255 (100% duty cycle ~5 volts).

The Arduino is a digital

machine but it has the ability

to operate in the analog

realm (through tricks).

Here's how to deal with

things that aren't digital.

int analogRead(pin);

When the analog input pins are set

to input you can read their voltage.

A value between 0 (for 0

volts) and 1024 (for

5 volts) will be

returned.

.:For a full programming reference visit:.
http://ardx.org/PROG

DC Motor What it Does: No. of Leads:

Spins when a current is passed through it. 2

Identifying: Things to watch out for:

This one is easy, it looks like a motor. - Using a transistor or relay that is rated

Usually a cylinder with a shaft coming out for the size of motor you're using.

of one end. More Details:

 http://ardx.org/MOTO

Hobby Servo What it Does: No. of Leads:

Takes a timed pulse and converts it into 3

an angular position of the output shaft. Things to watch out for:

Identifying: - The plug is not polarized so make sure

A plastic box with 3 wires coming out one it is plugged in the right way.

side and a shaft with a plastic horn out More Details:

the top. http://ardx.org/SERV

06

04 ELEC
electronics

primer

.:A Small Electronics Primer:.

ELECTRONICS IN BRIEF

No previous electronic experience is required to have fun with this kit. Here are a few details

about each component to make identifying, and perhaps understanding them, a bit easier. If

at any point you are worried about how a component is used or why it's not working the

internet offers a treasure trove of advice, or we can be contacted at help@oomlout.com

COMPONENT DETAILS

LED
(Light Emitting Diode)

What it Does: No. of Leads:

Emits light when a small current is 2 (one longer, this one connects to positive)

passed through it. (only in one direction) Things to watch out for:

Identifying: - Will only work in one direction

Looks like a mini light bulb. - Requires a current limiting resistor

More Details:

 http://ardx.org/LED

Resistors What it Does: No. of Leads:

Restricts the amount of current that can 2

flow through a circuit. Things to watch out for:

Identifying: - Easy to grab the wrong value (double

check the colors before using) Cylinder with wires extending from either
More Details:end. The value is displayed using a color
 http://ardx.org/RESIcoding system (for details see next page)

Transistor What it Does: No. of Leads:

Uses a small current to switch or amplify a 3 (Base, Collector, Emitter)

much larger current. Things to watch out for:

Identifying: - Plugging in the right way round (also a

current limiting resistor is often needed on the base pin) Comes in many different packages but you
More Details:can read the part number off the package.
 http://ardx.org/TRAN(P2N2222AG in this kit and find a datasheet online)

Diode What it Does: No. of Leads:

The electronic equivalent of a one way 2

valve. Allowing current to flow in one Things to watch out for:

direction but not the other. - Will only work in one direction (current will

flow if end with the line is connected to ground)Identifying:
More Details:Usually a cylinder with wires extending from
 http://ardx.org/DIODeither end. (and an off center line indicating polarity)

07

04 ELEC
electronics

primer

Piezo Element
What it Does:

A pulse of current will cause it to click. A No. of Leads:

stream of pulses will cause it to emit a 2

tone. Things to watch out for:

Identifying: - Difficult to misuse.

In this kit it comes in a little black barrel, More Details:

but sometimes they are just a gold disc. http://ardx.org/PIEZ

Potentiometer
What it Does: No. of Leads:

Produces a variable resistance dependant 3

on the angular position of the shaft. Things to watch out for:

Identifying: - Accidentally buying logarithmic scale.

They can be packaged in many different More Details:

form factors, look for a dial to identify. http://ardx.org/POTE

IC (Integrated Circuit)
What it Does: No. of Leads:

Packages any range of complicated 2 - 100s (in this kit there is one with 3 (TMP36) and

one with 16 (74HC595)electronics inside an easy to use package.
Things to watch out for:Identifying:
 - Proper orientation. (look for marks showing pin 1)The part ID is written on the outside of the
More Details:package. (this sometimes requires a lot of
 http://ardx.org/ICIClight or a magnifying glass to read).

Photo Resistor
What it Does: No. of Leads:

Produces a variable resistance dependant 2

on the amount of incident light. Things to watch out for:

Identifying: - Remember it needs to be in a voltage

Usually a little disk with a clear top and a divider before it provides a useful input.

curvy line underneath. More Details:

 http://ardx.org/PHOT

Pushbutton What it Does: No. of Leads:

Completes a circuit when it is pressed. 4

Identifying: Things to watch out for:

A little square with leads out the bottom - these are almost square so can be

and a button on the top. inserted 90 degrees off angle.

More Details:

 http://ardx.org/BUTT

0 - Black 5 - Green 20% - none
1 - Brown 6 - Blue 10% - silver
2 - Red 7 - Purple 5% - gold
3 - Orange 8 - Grey
4 - Yellow 9 - White

first digit

second digit

of zeros

tolerance

Examples:
green-blue-brown - 560 ohms
red-red-red - 2 200 ohms (2.2k)
brown-black-orange - 10 000 ohms (10k)

RESISTOR COLOR CODE LEAD CLIPPING

Some components in this kit come with very long wire
leads. To make them more compatible with a breadboard
a couple of changes are required.
LEDs:
Clip the leads so the long lead is ~10mm (3/8”) long and
the short one is ~7mm (9/32”).
Resistors:
Bend the leads down so they are 90 degrees to the
cylinder. Then snip them so they are ~6mm
(1/4”) long.
Other Components:
Other components may need clipping.
Use your discretion when doing so.

COMPONENT DETAILS (CONT.)

Arduino
pin 13

LED
(light emitting diode)

resistor (560ohm)

(green-blue-brown)

gnd
(ground) (-)

08

CIRC-01

WHAT WE’RE DOING:

.:Getting Started:.

.:(Blinking LED):.

LEDs (light emitting diodes) are used in all sorts of clever things

which is why we have included them in this kit. We will start off

with something very simple, turning one on and off, repeatedly,

producing a pleasant blinking effect. To get started, grab the parts

listed below, pin the layout sheet to your breadboard and then plug

everything in. Once the circuit is assembled you'll need to upload the program. To do this plug the

Arduino board into your USB port. Then select the proper port in Tools > Serial Port > (the

comm port of your Arduino). Next upload the program by going to File > Upload to I/O

Board (ctrl+U). Finally, bask in the glory and possibility that controlling lights offers.

If you are having trouble uploading, a full trouble shooting guide can be found here: http://ardx.org/TRBL

Wire
10mm LED
x1

560 Ohm Resistor
Green-Blue-Brown
x1

2 Pin Header
x4

CIRC-01
Breadboard Sheet
x1

Parts:

.:download:.
breadboard layout sheet

http://ardx.org/BBLS01
.:view:.

assembly video
http://ardx.org/VIDE01

The Internet

longer lead
+

THE CIRCUIT:

Schematic

NOT WORKING? (3 things to try)

CODE (no need to type everything in just click)

09

CIRC-01
File > 1.Basic > Blink
(example from the great arduino.cc site, check it out for other ideas)

 Examples >

/* Blink
 * Turns on an LED on for one second, then off for one second,
 * repeatedly.
 * Created 1 June 2005 By David Cuartielles
 * http://arduino.cc/en/Tutorial/Blink
 * based on an orginal by H. Barragan for the Wiring i/o board
 */

int ledPin = 13; // LED connected to digital pin 13

// The setup() method runs once, when the sketch starts
void setup() { // initialize the digital pin as an output:
 pinMode(ledPin, OUTPUT); }

// the loop() method runs over and over again,
// as long as the Arduino has power
void loop() {
 digitalWrite(ledPin, HIGH); // set the LED on
 delay(1000); // wait for a second
 digitalWrite(ledPin, LOW); // set the LED off
 delay(1000); // wait for a second
}

More details, where to buy more parts, where to ask more questions:

http://ardx.org/CIRC01

LED Not Lighting Up?
LEDs will only work in one

direction. Try taking it out and

twisting it 180 degrees.

(no need to worry, installing it

backwards does no permanent

harm).

Changing the pin: Control the brightness:
The LED is connected to pin 13 but we can use any of Along with digital (on/off) control the Arduino can control

the Arduino’s pins. To change it take the wire plugged some pins in an analog (brightness) fashion. (more details on

into pin 13 and move it to a pin of your choice (from 0- this in later circuits). To play around with it.

13) (you can also use analog 0-5, analog 0 is 14...) Change the LED to pin 9: (also change the wire)
ledPin = 13; -> int ledPin = 9;

Then in the code change the line:
 int ledPin = 13; -> int ledPin = newpin; Replace the code inside the { }'s of loop() with this:

analogWrite(ledPin, new number);Then upload the sketch: (ctrl-u)

Change the blink time: (new number) = any number between 0 and 255.
Unhappy with one second on one second off? 0 = off, 255 = on, in between = different brightness

Fading:In the code change the lines:
 digitalWrite(ledPin, HIGH); We will use another included example program. To open go to
 delay(time on); //(seconds * 1000)

File > Examples > 3.Analog > Fading
 digitalWrite(ledPin, LOW);

Then upload to your board and watch as the LED fades in and delay(time off); //(seconds * 1000)

then out.

Still No Success?
A broken circuit is no fun, send

us an e-mail and we will get

back to you as soon as we can.

help@oomlout.com

Program Not Uploading

 This happens sometimes,

the most likely cause is a

confused serial port, you

can change this in

tools>serial port>

MAKING IT BETTER

MORE, MORE, MORE:

Wire

10

CIRC-02
.:8 LED Fun:.

.:Multiple LEDs:.

We have caused one LED to blink, now it's time to up the

stakes. Lets connect eight. We'll also have an opportunity to

stretch the Arduino a bit by creating various lighting

sequences. This circuit is also a nice setup to experiment with

writing your own programs and getting a feel for how the Arduino works.

Along with controlling the LEDs we start looking into a few simple programming methods to

keep your programs small.

for() loops - used when you want to run a piece of code several times.

arrays[] - used to make managing variables easier (it's a group of variables).

5mm Green LED
x8

560 Ohm Resistor
Green-Blue-Brown
x8

2 Pin Header
x4

CIRC-02
Breadboard Sheet
x1

.:download:.
breadboard layout sheet

http://ardx.org/BBLS02
.:view:.

assembly video
http://ardx.org/VIDE02

LED

resistor
560ohm

gnd

pin 3pin 2 pin 4 pin 5

LED

resistor
560ohm

gnd

pin 7pin 6 pin 8 pin 9

WHAT WE’RE DOING:

The Internet

THE CIRCUIT:

Schematic

Parts:

NOT WORKING? (3 things to try)

MAKING IT BETTER

CODE (no need to type everything in just click)

MORE, MORE, MORE:

Operating out of sequence
With eight wires it's easy to cross

a couple. Double check that the

first LED is plugged into pin 2 and

each pin there after.

11

CIRC-02
Download the Code from (http://ardx.org/CODE02)
(and then copy the text and paste it into an empty Arduino Sketch)

More details, where to buy more parts, where to ask more questions:

http://ardx.org/CIRC02

Some LEDs Fail to Light
 It is easy to insert an LED

backwards. Check the LEDs

that aren't working and ensure

they the right way around.

Switching to loops: Extra animations:
Tired of this animation? Then try the other two In the loop() function there are 4 lines. The last
sample animations. Uncomment their lines and upload three all start with a '//'. This means the line is
the program to your board and enjoy the new light treated as a comment (not run). To switch the
animations. (delete the slashes in front of row 3 and then 4)program to use loops change the void loop()

code to:
 //oneAfterAnotherNoLoop(); Testing out your own animations:
 oneAfterAnotherLoop(); Jump into the included code and start changing
 //oneOnAtATime();

things. The main point is to turn an LED on use //inAndOut();

digitalWrite(pinNumber, HIGH); then to turn
Upload the program, and notice that nothing has

it off use digitalWrite(pinNumber, LOW); . changed. You can take a look at the two

functions, each does the same thing, but use Type away, regardless of what you change you won't

different approaches (hint: the second one uses break anything.

a for loop).

Starting Afresh
Its easy to accidentally

misplace a wire without

noticing. Pulling everything out

and starting with a fresh slate

is often easier than trying to

track down the problem.

//LED Pin Variables * will then turn them off
int ledPins[] = {2,3,4,5,6,7,8,9};
 //An array to hold the void oneAfterAnotherNoLoop(){
 //pin each LED is connected to int delayTime = 100;
 //i.e. LED #0 is connected to pin 2 / / t h e t i m e (i n m i l l i s e c o n d s) t o p a u s e

 //between LEDs
void setup() digitalWrite(ledPins[0], HIGH); //Turns on LED #0
{ //(connected to pin 2)
 for(int i = 0; i < 8; i++){ delay(delayTime); //waits delayTime milliseconds
 //this is a loop and will repeat eight times ...
 pinMode(ledPins[i],OUTPUT); ...
 //we use this to set LED pins to output digitalWrite(ledPins[7], HIGH); //Turns on LED #7
 } //(connected to pin 9)
} delay(delayTime); //waits delayTime milliseconds

//Turns Each LED Off
void loop() // run over and over again digitalWrite(ledPins[7], LOW); //Turns off LED #7
{ delay(delayTime); //waits delayTime milliseconds
 oneAfterAnotherNoLoop(); ...
 //this will turn on each LED one by
 //one then turn each oneoff -----more code in the downloadable version------
 //oneAfterAnotherLoop();
 //this does the same as onAfterAnotherNoLoop
 //but with much less typing
 //oneOnAtATime();
 //inAndOut();
}

/*
 * oneAfterAnotherNoLoop() - Will light one then
 * delay for delayTime then light the next LED it

12

CIRC-03
.:Spin Motor Spin:.

.:Transistor & Motor:.

The Arduino's pins are great for directly controlling small electric

items like LEDs. However, when dealing with larger items (like a

toy motor or washing machine), an external transistor is required. A

transistor is incredibly useful. It switches a lot of current using a

much smaller current. A transistor has 3 pins. For a negative type (NPN)

transistor, you connect your load to collector and the emitter to ground. Then when a small current

flows from base to the emitter, a current will flow through the transistor and your motor will spin

(this happens when we set our Arduino pin HIGH). There are literally thousands of different types of

transistors, allowing every situation to be perfectly matched. We have chosen a P2N2222AG a rather

common general purpose transistor. The important factors in our case are that its maximum voltage

(40v) and its maximum current (600 milliamp) are both high enough for our toy motor (full details

can be found on its datasheet http://ardx.org/2222).

(The 1N4001 diode is acting as a flyback diode for details on why its there visit: http://ardx.org/4001)

Wire
Transistor
P2N2222AG (TO92)
x1

2.2k Ohm Resistor
Red-Red-Red
x1

2 Pin Header
x4

Toy Motor
x1

Arduino
pin 9

resistor
(2.2kohm)

gnd
(ground) (-)

Collector Emitter

Base

Motor

+5 volts

Transistor
 P2N2222AG

The transistor will have
P2N2222AG printed on it
(some variations will have
different pin assignments!)

Diode
(1N4001)
x1

Diode

.:download:.
breadboard layout sheet

http://ardx.org/BBLS03
.:view:.

assembly video
http://ardx.org/VIDE03

.:NOTE: if your arduino is resetting you need to install the optional capacitor:.

WHAT WE’RE DOING:

THE CIRCUIT:

Schematic

Parts:

The Internet

CIRC-03
Breadboard Sheet
x1

Still No Luck?
If you sourced your own

motor, double check that it will

work with 5 volts and that it

does not draw too much

power.

13

CIRC-03

More details, where to buy more parts, where to ask more questions:

http://ardx.org/CIRC03

Motor Not Spinning?
If you sourced your own

transistor, double check with

the data sheet that the pinout

is compatible with a P2N2222A

(many are reversed).

Controlling speed: In the loop() section change it to this
We played with the Arduino's ability to control the // motorOnThenOff();

 motorOnThenOffWithSpeed();brightness of an LED earlier now we will use the same
// motorAcceleration();feature to control the speed of our motor. The Arduino
Then upload the programme. You can change the speeds by

does this using something called Pulse Width
changing the variables onSpeed and offSpeed.

Modulation (PWM). This relies on the Arduino's ability to

operate really, really fast. Rather than directly Accelerating and decelerating:
controlling the voltage coming from the pin the Arduino Why stop at two speeds, why not accelerate and decelerate

will switch the pin on and off very quickly. In the the motor. To do this simply change the loop() code to read
// motorOnThenOff();computer world this is going from 0 to 5 volts many
// motorOnThenOffWithSpeed();times a second, but in the human world we see it as a
 motorAcceleration();

voltage. For example if the Arduino is PWM'ing at 50%

we see the light dimmed 50% because our eyes are not Then upload the program and watch as your motor slowly
quick enough to see it flashing on and off. The same accelerates up to full speed then slows down again. If you
feature works with transistors. Don't believe me? Try it would like to change the speed of acceleration change the
out. variable delayTime (larger means a longer acceleration time).

Still Not Working?
Sometimes the Arduino board

will disconnect from the

computer. Try un-plugging and

then re-plugging it into your

USB port.

Download the Code from (http://ardx.org/CODE03)
(then simply copy the text and paste it into an empty Arduino Sketch)

int motorPin = 9; //pin the motor is connected to

void setup() //runs once void motorOnThenOffWithSpeed(){
{ int onSpeed = 200;// a number between
 pinMode(motorPin, OUTPUT); //0 (stopped) and 255 (full speed)
} int onTime = 2500;

 int offSpeed = 50;// a number between
void loop() // run over and over again //0 (stopped) and 255 (full speed)
{ int offTime = 1000;
 motorOnThenOff(); analogWrite(motorPin, onSpeed);
 //motorOnThenOffWithSpeed(); // turns the motor On
 //motorAcceleration(); delay(onTime); // waits for onTime milliseconds
} analogWrite(motorPin, offSpeed);

 // turns the motor Off
/* delay(offTime); // waits for offTime milliseconds
 * motorOnThenOff() - turns motor on then off }
 * (notice this code is identical to the code we

void motorAcceleration(){used for
 int delayTime = 50; //time between each speed step * the blinking LED)
 for(int i = 0; i < 256; i++){ */
 //goes through each speed from 0 to 255void motorOnThenOff(){
 analogWrite(motorPin, i); //sets the new speed int onTime = 2500; //on time
 delay(delayTime);// waits for delayTime milliseconds int offTime = 1000; //off time
 } digitalWrite(motorPin, HIGH);
 for(int i = 255; i >= 0; i--){ // turns the motor On
 //goes through each speed from 255 to 0 delay(onTime); // waits for onTime milliseconds
 analogWrite(motorPin, i); //sets the new speed digitalWrite(motorPin, LOW);
 delay(delayTime);//waits for delayTime milliseconds // turns the motor Off
 } delay(offTime);// waits for offTime milliseconds
}}

NOT WORKING? (3 things to try)

MAKING IT BETTER

CODE (no need to type everything in just click)

MORE, MORE, MORE:

WHAT WE’RE DOING:

Parts:

The Internet

THE CIRCUIT:

Schematic

14

CIRC-04
.:A Single Servo:.

.:Servos:.

Spinning a motor is good fun but when it comes to projects

where motion control is required they tend to leave us

wanting more. The answer? Hobby servos. They are mass

produced, widely available and cost anything from a couple of

dollars to hundreds. Inside is a small gearbox (to make the movement more powerful) and

some electronics (to make it easier to control). A standard servo is positionable from 0 to

180 degrees. Positioning is controlled through a timed pulse, between 1.25 milliseconds (0

degrees) and 1.75 milliseconds (180 degrees) (1.5 milliseconds for 90 degrees). Timing

varies between manufacturer. If the pulse is sent every 25-50 milliseconds the servo will run

smoothly. One of the great features of the Arduino is it has a software library that allows

you to control two servos (connected to pin 9 or 10) using a single line of code.

Wire
3 Pin Header
x1

Mini Servo
x1

2 Pin Header
x4

Arduino
pin 9

gnd
(ground) (-)

gnd
(black)

signal
(white)

+5v
(red)

Mini Servo

+5 volts
(5V)

.:download:.
breadboard layout sheet

http://ardx.org/BBLS04
.:view:.

assembly video
http://ardx.org/VIDE04

CIRC-04
Breadboard Sheet
x1

Still Not Working
A mistake we made a time or

two was simply forgetting to

connect the power (red and

brown wires) to +5 volts and

ground.

15

CIRC-04
File > Examples > Servo > Sweep
(example from the great arduino.cc site, check it out for other great ideas)

More details, where to buy more parts, where to ask more questions:

http://ardx.org/CIRC04

Servo Not Twisting?
Even with colored wires it is

still shockingly easy to plug a

servo in backwards. This might

be the case.

Potentiometer control:
void loop() {

We have yet to experiment with inputs but if you would like int pulseTime = 2100; //(the number of microseconds
 //to pause for (1500 90 degrees

to read ahead, there is an example program File > Servo > // 900 0 degrees 2100 180 degrees)
 digitalWrite(servoPin, HIGH);Knob. This uses a potentiometer (CIRC08) to control the
 delayMicroseconds(pulseTime);
 digitalWrite(servoPin, LOW);servo. You can find instructions online here:
 delay(25);

http://ardx.org/KNOB }

Great ideas:Self timing:
Servos can be used to do all sorts of great things, here are a few of While it is easy to control a servo using the Arduino's included

our favorites.library sometimes it is fun to figure out how to program

something yourself. Try it. We're controlling the pulse directly
Xmas Hit Counter

so you could use this method to control servos on any of the http://ardx.org/XMAS
Arduino's 20 available pins (you need to highly optimize this

code before doing that). Open Source Robotic Arm (uses a servo controller as well as the Arduino)

http://ardx.org/RARM
 int servoPin = 9;

void setup(){ Servo Walker
 pinMode(servoPin,OUTPUT);

http://ardx.org/SEWA}

// Sweep
// by BARRAGAN <http://barraganstudio.com>

#include <Servo.h>
Servo myservo; // create servo object to control a servo
int pos = 0; // variable to store the servo position

void setup() {
 myservo.attach(9); // attaches the servo on pin 9 to the servo object
}

void loop() {
 for(pos = 0; pos < 180; pos += 1) // goes from 0 degrees to 180 degrees
 { // in steps of 1 degree
 myservo.write(pos); // tell servo to go to position in variable 'pos'
 delay(15); // waits 15ms for the servo to reach the position
 }
 for(pos = 180; pos>=1; pos-=1) // goes from 180 degrees to 0 degrees
 {
 myservo.write(pos); // tell servo to go to position in variable 'pos'
 delay(15); // waits 15ms for the servo to reach the position
 }
}

Fits and Starts

If the servo begins moving then

twitches, and there's a flashing

light on your Arduino board, the

power supply you are using is

not quite up to the challenge.

Using a fresh battery instead of

USB should solve this problem.

NOT WORKING? (3 things to try)

MAKING IT BETTER

CODE (no need to type everything in just click)

MORE, MORE, MORE:

WHAT WE’RE DOING:

Parts:

The Internet

THE CIRCUIT:

Schematic

16

CIRC-05 .:8 More LEDs:.
.:74HC595 Shift Register:.

Time to start playing with chips, or integrated circuits (ICs) as they like to

be called. The external packaging of a chip can be very deceptive. For

example, the chip on the Arduino board (a microcontroller) and the one we

will use in this circuit (a shift register) look very similar but are in fact rather

different. The price of the ATMega chip on the Arduino board is a few dollars

while the 74HC595 is a couple dozen cents. It's a good introductory chip, and once you're comfortable playing

around with it and its datasheet (available online http://ardx.org/74HC595) the world of chips will be your oyster.

The shift register (also called a serial to parallel converter), will give you an additional 8 outputs (to control LEDs

and the like) using only three Arduino pins. They can also be linked together to give you a nearly unlimited

number of outputs using the same four pins. To use it you “clock in” the data and then lock it in (latch it). To do

this you set the data pin to either HIGH or LOW, pulse the clock, then set the data pin again and pulse the clock

repeating until you have shifted out 8 bits of data. Then you pulse the latch and the 8 bits are transferred to the

shift registers pins. It sounds complicated but is really simple once you get the hang of it.

(for a more in depth look at how a shift register works visit: http://ardx.org/SHIF)

Wire

Shift Register
74HC595
x1

560 Ohm Resistor
Green-Blue-Brown
x8

2 Pin Header
x4

CIRC-05
Breadboard Sheet
x1

Red LED
x8

LE
D

re
si

st
o
r

(5
6
0
o
h
m

)

g
n
d

(g
ro

u
n
d
)

(-
)

pin
4

pin
3

pin
2

0

1
2

3

4

5

6

7

data
clock
latch

+5V

gnd

74HC595

+5 volts

There is a half moon
cutout, this goes at the top

.:download:.
breadboard layout sheet

http://ardx.org/BBLS05
.:view:.

assembly video
http://ardx.org/VIDE05

Not Quite Working
 Sorry to sound like a broken

record but it is probably

something as simple as a

crossed wire.

17

CIRC-05

More details, where to buy more parts, where to ask more questions:

http://ardx.org/CIRC05

The Arduino’s power

LED goes out

 This happened to us a couple

of times, it happens when the

chip is inserted backwards. If

you fix it quickly nothing will

break.

 //between LED updatesDoing it the hard way:
 for(int i = 0; i < 8; i++){An Arduino makes rather complex actions very easy, shifting out data is
 changeLED(i,ON);

one of these cases. However one of the nice features of an Arduino is delay(delayTime);
 }you can make things as easy or difficult as you like. Let's try an
 for(int i = 0; i < 8; i++){

example of this. In your loop switch the line: changeLED(i,OFF);
 delay(delayTime);updateLEDs(i) -> updateLEDsLong(i);
 }Upload the program and notice nothing has changed. If you look at the
Uploading this will cause the lights to light up one after another and then off

code you can see how we are communicating with the chip one bit at a
in a similar manner. Check the code and wikipedia to see how it works, or

time. (for more details http://ardx.org/SPI).
shoot us an e-mail if you have questions.

Controlling individual LEDs:
More animations:Time to start controlling the LEDs in a similar method as we did in
Now things get more interesting. If you look back to the code from CIRC02 (8

CIRC02. As the eight LED states are stored in one byte (an 8 bit value)
LED Fun) you see we change the LEDs using digitalWrite(led, state), this is

for details on how this works try http://ardx.org/BINA. An Arduino is
the same format as the routine we wrote changeLED(led, state). You can use

very good at manipulating bits and there are an entire set of operators
the animations you wrote for CIRC02 by copying the code into this sketch and

that help us out. Details on bitwise maths (http://ardx.org/BITW).
changing all the digitalWrite()'s to changeLED()'s. Powerful? Very. (you'll also

need to change a few other things but follow the compile errors and it works Our implementation.
Replace the loop() code with itself out).
 int delayTime = 100; //the number of milliseconds
 //to delay

Frustration?

Shoot us an e-mail, this circuit

is both simple and complex at

the same time. We want to

hear about problems you have

so we can address them in

future editions.

 help@oomlout.com

Download the Code from (http://ardx.org/CODE05)
(copy the text and paste it into an empty Arduino Sketch)

//Pin Definitions
//The 74HC595 uses a protocol called SPI
//Which has three pins
int data = 2; digitalWrite(latch, LOW);
int clock = 3;
int latch = 4; //Pulls the chips latch low

 shiftOut(data, clock, MSBFIRST, value);
void setup() //runs once //Shifts out 8 bits to the shift register
{
 pinMode(data, OUTPUT);
 pinMode(clock, OUTPUT); digitalWrite(latch, HIGH);
 pinMode(latch, OUTPUT); } //Pulls the latch high displaying the data

}
void loop() // run over and over again
{ ---------- More Code Online ----------
 int delayTime = 100;
 //delay between LED updates
 for(int i = 0; i < 256; i++){
 updateLEDs(i);
 delay(delayTime); }
}

/*
 * updateLEDs() - sends the LED states set
 * in value to the 74HC595 sequence
 */
void updateLEDs(int value){

NOT WORKING? (3 things to try)

MAKING IT BETTER

CODE (no need to type everything in just click)

MORE, MORE, MORE:

WHAT WE’RE DOING:

Parts:

The Internet

THE CIRCUIT:

Schematic

Arduino
pin 9

gnd
(ground) (-)

Piezo
Element

18

CIRC-06
.:Music:.

.:Piezo Elements:.

To this point we have controlled light, motion, and

electrons. Let's tackle sound next. But sound is an

analog phenomena, how will our digital Arduino cope?

We will once again rely on its incredible speed which will let it

mimic analog behavior. To do this, we will attach a piezo element to one of the

Arduino's digital pins. A piezo element makes a clicking sound each time it is pulsed

with current. If we pulse it at the right frequency (for example 440 times a second to

make the note middle A) these clicks will run together to produce notes. Let's get to

experimenting with it and get your Arduino playing "Twinkle Twinkle Little Star".

Wire

Piezo Element
x1

2 Pin Header
x4

CIRC-06
Breadboard Sheet
x1

.:download:.
breadboard layout sheet

http://ardx.org/BBLS06
.:view:.

assembly video
http://ardx.org/VIDE06

NOT WORKING? (3 things to try)

MAKING IT BETTER

MORE, MORE, MORE:

19

CIRC-06

Can't Think While the

Melody is Playing?
Just pull up the piezo element

whilst you think, upload your

program then plug it back in.

More details, where to buy more parts, where to ask more questions:

http://ardx.org/CIRC06

No Sound
Given the size and shape of

the piezo element it is easy to

miss the right holes on the

breadboard. Try double

checking its placement.

char names[] = { 'c', 'd', 'e', 'f', 'g', 'a', 'b', Playing with the speed:
'C' };The timing for each note is calculated based on
int tones[] = { 1915, 1700, 1519, 1432, 1275, 1136,

variables, as such we can tweak the sound of each note 1014, 956 };

or the timing. To change the speed of the melody you Composing your own melodies:
need to change only one line. The program is pre-set to play 'Twinkle Twinkle Little Star'
int tempo = 300; ---> int tempo = (new #) however the way it is programmed makes changing the song
Change it to a larger number to slow the melody down,

easy. Each song is defined in one int and two arrays, the int
or a smaller number to speed it up.

length defines the number of notes, the first array Tuning the notes:
notes[] defines each note, and the second beats[] If you are worried about the notes being a little out of
defines how long each note is played. Some Examples:tune this can be fixed as well. The notes have been
 Twinkle Twinkle Little Starcalculated based on a formula in the comment block at int length = 15;
 char notes[] = {"ccggaagffeeddc "}; the top of the program. But to tune individual notes just
 int beats[] = { 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1,

adjust their values in the tones[] array up or down 1, 1, 2, 4 };

 Happy Birthday (first line) until they sound right. (each note is matched by its
 int length = 13;

name in the names[] (array ie. c = 1915) char notes[] = {"ccdcfeccdcgf "};
 int beats[] = {1,1,1,1,1,2,1,1,1,1,1,2,4};

Tired of Twinkle Twinkle

Little Star?
The code is written so you can

easily add your own songs,

check out the code below to

get started.

/* Melody
 * (cleft) 2005 D. Cuartielles for K3
 * digitalWrite(speakerPin,
 * This example uses a piezo speaker to play melodies. It sends LOW);
 * a square wave of the appropriate frequency to the piezo, delayMicroseconds(tone);
 * generating the corresponding tone. }
 * }
 * The calculation of the tones is made following the
 * mathematical operation: void playNote(char note, int duration) {
 * char names[] = { 'c', 'd', 'e', 'f', 'g', 'a', 'b', 'C' };
 * timeHigh = period / 2 = 1 / (2 * toneFrequency) int tones[] = { 1915, 1700, 1519, 1432, 1275, 1136, 1014, 956
 *

}; * where the different tones are described as in the table:
 // play the tone corresponding to the note name *
 for (int i = 0; i < 8; i++) { * note frequency period timeHigh
 if (names[i] == note) { * c 261 Hz 3830 1915
 playTone(tones[i], duration); * d 294 Hz 3400 1700
 } * e 329 Hz 3038 1519
 } * f 349 Hz 2864 1432
} * g 392 Hz 2550 1275

 * a 440 Hz 2272 1136
void setup() { * b 493 Hz 2028 1014
 pinMode(speakerPin, OUTPUT); * C 523 Hz 1912 956
} *

 * http://www.arduino.cc/en/Tutorial/Melody
void loop() { */
 for (int i = 0; i < length; i++) {
 if (notes[i] == ' ') {int speakerPin = 9;
 delay(beats[i] * tempo); // restint length = 15; // the number of notes
 } else {char notes[] = "ccggaagffeeddc "; // a space represents a rest
 playNote(notes[i], beats[i] * tempo);int beats[] = { 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 4 };
 }int tempo = 300;
 // pause between notes
 delay(tempo / 2); }void playTone(int tone, int duration) {
} for (long i = 0; i < duration * 1000L; i += tone * 2) {

 digitalWrite(speakerPin, HIGH);
 delayMicroseconds(tone);

Download the Code from (http://ardx.org/CODE06)
(copy the text and paste it into an empty Arduino Sketch)

CODE (no need to type everything in just click)

WHAT WE’RE DOING:

Parts:

The Internet

THE CIRCUIT:

Schematic

20

CIRC-07
.:Button Pressing:.

.:Pushbuttons:.

Up to this point we have focused entirely on outputs, time to

get our Arduino to listen, watch and feel. We'll start with a

simple pushbutton. Wiring up the pushbutton is simple. There is

one component, the pull up resistor, that might seem out of place.

This is included because an Arduino doesn't sense the same way we do (ie button pressed,

button unpressed). Instead it looks at the voltage on the pin and decides whether it is HIGH

or LOW. The button is set up to pull the Arduino's pin LOW when it is pressed, however, when

the button is unpressed the voltage of the pin will float (causing occasional errors). To get the

Arduino to reliably read the pin as HIGH when the button is unpressed, we add the pull up

resistor.

(note: the first example program uses only one of the two buttons)

Wire
Pushbutton
x2

560 Ohm Resistor
Green-Blue-Brown
x1

2 Pin Header
x4

CIRC-07
Breadboard Sheet
x1

Red LED
x1

10k Ohm Resistor
Brown-Black-Orange
x2

Arduino
pin 13

LED

resistor
(560ohm)

gnd
(ground) (-)

pin 2

pushbutton

pin 3

+5 volts

Arduino

resistor
 (10k ohm)

.:download:.
breadboard layout sheet

http://ardx.org/BBLS07
.:view:.

assembly video
http://ardx.org/VIDE07

NOT WORKING? (3 things to try)

MAKING IT BETTER

CODE (no need to type everything in just click)

MORE, MORE, MORE:

Light Not Fading
A bit of a silly mistake we

constantly made, when you

switch from simple on off to

fading remember to move the

LED wire from pin 13 to pin 9.

21

CIRC-07
File > Examples > 2.Digital > Button
(example from the great arduino.cc site, check it out for other great ideas)
/*
 * Button
 * by DojoDave <http://www.0j0.org>
 *
 * Turns on and off a light emitting diode(LED) connected to digital
 * pin 13, when pressing a pushbutton attached to pin 7.
 * http://www.arduino.cc/en/Tutorial/Button
 */
 int ledPin = 13; // choose the pin for the LED
int inputPin = 2; // choose the input pin (for a pushbutton)
int val = 0; // variable for reading the pin status

void setup() {
 pinMode(ledPin, OUTPUT); // declare LED as output
 pinMode(inputPin, INPUT); // declare pushbutton as input
}

void loop(){
 val = digitalRead(inputPin); // read input value
 if (val == HIGH) { // check if the input is HIGH
 digitalWrite(ledPin, LOW); // turn LED OFF
 } else {
 digitalWrite(ledPin, HIGH); // turn LED ON
 }
}

More details, where to buy more parts, where to ask more questions:

http://ardx.org/CIRC07

Light Not Turning On
 The pushbutton is square

and because of this it is easy

to put it in the wrong way.

Give it a 90 degree twist and

see if it starts working.

On button off button: Fading up and down:
The initial example may be a little underwhelming (ie. I Lets use the buttons to control an analog signal. To do this

don't really need an Arduino to do this), let’s make it a you will need to change the wire connecting the LED from pin

little more complicated. One button will turn the LED on 13 to pin 9, also change this in code.
int ledPin = 13; ----> int ledPin = 9;

the other will turn the LED off. Change the code to:
Next change the loop() code to read.int ledPin = 13; // choose the pin for the LED

int inputPin1 = 3; // button 1 int value = 0;
int inputPin2 = 2; // button 2 void loop(){

 if (digitalRead(inputPin1) == LOW) { value--; }
void setup() { else if (digitalRead(inputPin2) == LOW) { value++; }
 pinMode(ledPin, OUTPUT); // declare LED as output value = constrain(value, 0, 255);
 pinMode(inputPin1, INPUT); // make button 1 an input analogWrite(ledPin, value);
 pinMode(inputPin2, INPUT); // make button 2 an input delay(10);
} }

void loop(){
Changing fade speed: if (digitalRead(inputPin1) == LOW) {

 digitalWrite(ledPin, LOW); // turn LED OFF If you would like the LED to fade faster or slower, there is only } else if (digitalRead(inputPin2) == LOW) {
 digitalWrite(ledPin, HIGH); // turn LED ON one line of code that needs changing;
 }

delay(10); ----> delay(new #);}
To fade faster make the number smaller, slower requires a Upload the program to your board, and start toggling the
larger number.LED on and off.

Underwhelmed?
No worries these circuits are all

super stripped down to make

playing with the components

easy, but once you throw them

together the sky is the limit.

WHAT WE’RE DOING:

The Internet

THE CIRCUIT:

Schematic

.:Twisting:.

.:Potentiometers:.

Along with the digital pins, the Arduino also has 6

pins which can be used for analog input. These

inputs take a voltage (from 0 to 5 volts) and convert

it to a digital number between 0 (0 volts) and 1024 (5 volts) (10 bits of

resolution). A very useful device that exploits these inputs is a potentiometer

(also called a variable resistor). When it is connected with 5 volts across its

outer pins the middle pin will read some value between 0 and 5 volts

dependent on the angle to which it is turned (ie. 2.5 volts in the middle). We

can then use the returned values as a variable in our program.

WirePotentiometer
10k ohm
x1

560 Ohm Resistor
Green-Blue-Brown
x1

2 Pin Header
x4

CIRC-08
Breadboard Sheet
x1

Green LED
x1

Arduino
pin 13

LED
(light
emitting
diode)

resistor (560ohm)

(blue-green-brown)

gnd
(ground) (-)

Potentiometer

+5 volts

Arduino
analog
pin 0

.:download:.
breadboard layout sheet

http://ardx.org/BBLS08
.:view:.

assembly video
http://ardx.org/VIDE08

22

CIRC-08

Parts:

Not Working
Make sure you haven't

accidentally connected the

potentiometer's wiper to digital

pin 2 rather than analog pin 2.

(the row of pins beneath the

power pins)

File > Examples > 3.Analog > AnalogInput
(example from the great arduino.cc site, check it out for other great ideas)

/* Analog Input
 * Demonstrates analog input by reading an analog sensor on analog
 * pin 0 and turning on and off a light emitting diode(LED) connected to

digital pin 13.
 * The amount of time the LED will be on and off depends on the value obtained by
 * analogRead().
 * Created by David Cuartielles
 * Modified 16 Jun 2009
 * By Tom Igoe
 * http://arduino.cc/en/Tutorial/AnalogInput
 */

int sensorPin = 0; // select the input pin for the potentiometer
int ledPin = 13; // select the pin for the LED
int sensorValue = 0; // variable to store the value coming from the sensor

void setup() {
 pinMode(ledPin, OUTPUT); //declare the ledPin as an OUTPUT:
}

void loop() {
 sensorValue = analogRead(sensorPin);// read the value from the sensor:
 digitalWrite(ledPin, HIGH); // turn the ledPin on
 delay(sensorValue); // stop the program for <sensorValue> milliseconds:
 digitalWrite(ledPin, LOW); // turn the ledPin off:
 delay(sensorValue); // stop the program for for <sensorValue> milliseconds:
}

More details, where to buy more parts, where to ask more questions:

http://ardx.org/CIRC08

 Sporadically Working
This is most likely due to a

slightly dodgy connection with

the potentiometer's pins. This

can usually be conquered by

taping the potentiometer down.

Threshold switching: Then change the loop code to.
 void loop() {Sometimes you will want to switch an output when a value
 int value = analogRead(potPin) / 4;

exceeds a certain threshold. To do this with a analogWrite(ledPin, value);
 }

potentiometer change the loop() code to.
Upload the code and watch as your LED fades in relation to

void loop() {
your potentiometer spinning. (Note: the reason we divide the int threshold = 512;

 if(analogRead(sensorPin) > threshold){ value by 4 is the analogRead() function returns a value from 0
digitalWrite(ledPin, HIGH);}

to 1024 (10 bits), and analogWrite() takes a value from 0 to else{ digitalWrite(ledPin, LOW);}
} 255 (8 bits))
This will cause the LED to turn on when the value is above Controlling a servo:
512 (about halfway), you can adjust the sensitivity by This is a really neat example and brings a couple of circuits

changing the threshold value. together. Wire up the servo like you did in CIRC-04, then open
Fading: the example program Knob (File > Examples > Servo >
Let’s control the brightness of an LED directly from the

Knob), then change one line of code.
potentiometer. To do this we need to first change the pin int potpin = 0; ----> int potpin = 2;

Upload to your Arduino and then watch as the servo shaft turns the LED is connected to. Move the wire from pin 13 to pin

as you turn the potentiometer. 9 and change one line in the code.
int ledPin = 13; ----> int ledPin = 9;

Still Backward
 You can try operating the

circuit upside down.

Sometimes this helps.

23

CIRC-08

NOT WORKING? (3 things to try)

MAKING IT BETTER

CODE (no need to type everything in just click)

MORE, MORE, MORE:

24

CIRC-09
.:Light:.

.:Photo Resistors:.

Whilst getting input from a potentiometer can be useful

for human controlled experiments, what do we use

when we want an environmentally controlled

experiment? We use exactly the same principles but instead

of a potentiometer (twist based resistance) we use a photo resistor (light based

resistance). The Arduino cannot directly sense resistance (it senses voltage) so we

set up a voltage divider (http://ardx.org/VODI). The exact voltage at the sensing

pin is calculable, but for our purposes (just sensing relative light) we can

experiment with the values and see what works for us. A low value will occur when

the sensor is well lit while a high value will occur when it is in darkness.

Wire

Photo-Resistor
x1

560 Ohm Resistor
Green-Blue-Brown
x1

2 Pin Header
x4

CIRC-09
Breadboard Sheet
x1

Green LED
x1

10k Ohm Resistor
Brown-Black-Orange
x1

Arduino
pin 13

LED

resistor
(560ohm)

gnd
(ground) (-)

+5 volts

photo
resistor

resistor
(10k ohm)

Arduino
analog
pin 0

.:download:.
breadboard layout sheet

http://ardx.org/BBLS09
.:view:.

assembly video
http://ardx.org/VIDE09

WHAT WE’RE DOING:

Parts:

The Internet

THE CIRCUIT:

Schematic

NOT WORKING? (3 things to try)

MAKING IT BETTER

CODE (no need to type everything in just click)

MORE, MORE, MORE:

Still not quite working?

You may be in a room which is

either too bright or dark. Try

turning the lights on or off to

see if this helps. Or if you have

a flashlight near by give that a

try.

It Isn't Responding to

Changes in Light.

Given that the spacing of the

wires on the photo-resistor is

not standard, it is easy to

misplace it. Double check its in

the right place.

More details, where to buy more parts, where to ask more questions:

http://ardx.org/CIRC09

LED Remains Dark
This is a mistake we continue

to make time and time again,

if only they could make an LED

that worked both ways. Pull it

up and give it a twist.

Reverse the response: Light controlled servo:
Perhaps you would like the opposite response. Don't Let's use our newly found light sensing skills to control a

worry we can easily reverse this response just change: servo (and at the same time engage in a little bit of Arduino

 analogWrite(ledPin, lightLevel); ----> code hacking). Wire up a servo connected to pin 9 (like in
analogWrite(ledPin, 255 - lightLevel); CIRC-04). Then open the Knob example program (the same

Upload and watch the response change: one we used in CIRC-08) File > Examples > Servo >

Knob. Upload the code to your board and watch as it works
Night light:

unmodified.Rather than controlling the brightness of the LED in
Using the full range of your servo:

response to light, let's instead turn it on or off based on
You'll notice that the servo will only operate over a limited

a threshold value. Change the loop() code with.
portion of its range. This is because with the voltage dividing void loop(){

 int threshold = 300; circuit we use the voltage on analog pin 0 will not range from
 if(analogRead(lightPin) > threshold){
 digitalWrite(ledPin, HIGH); 0 to 5 volts but instead between two lesser values (these
 }else{

values will change based on your setup). To fix this play with digitalWrite(ledPin, LOW);
 }

the val = map(val, 0, 1023, 0, 179); line. For hints on what to }

do visit http://arduino.cc/en/Reference/Map .

Download the Code from (http://ardx.org/CODE09)
(copy the text and paste it into an empty Arduino Sketch)

/*
 * A simple programme that will change the //output
 * intensity of an LED based on the amount of }
 * light incident on the photo resistor. /*
 * * loop() - this function will start after setup
 */ * finishes and then repeat

 */
//PhotoResistor Pin void loop()
int lightPin = 0; //the analog pin the {
 //photoresistor is int lightLevel = analogRead(lightPin); //Read the
 //connected to // lightlevel
 //the photoresistor is not lightLevel = map(lightLevel, 0, 900, 0, 255);
 //calibrated to any units so //adjust the value 0 to 900 to 0 to 255
 //this is simply a raw sensor lightLevel = constrain(lightLevel, 0, 255);
 //value (relative light) //make sure the value is betwween 0 and 255
//LED Pin analogWrite(ledPin, lightLevel); //write the value
int ledPin = 9;//the pin the LED is connected to }
 //we are controlling brightness so
 //we use one of the PWM (pulse
 //width modulation pins)

void setup()
{
 pinMode(ledPin, OUTPUT); //sets the led pin to

25

CIRC-09

26

CIRC-10 .:Temperature:.
.:TMP36 Precision Temperature Sensor:.

What's the next phenomena we will measure with our

Arduino? Temperature. To do this we'll use a rather

complicated IC (integrated circuit) hidden in a package

identical to our P2N2222AG transistors. It has three pin's,

ground, signal and +5 volts, and is easy to use. It outputs 10

millivolts per degree centigrade on the signal pin (to allow measuring temperatures below

freezing there is a 500 mV offset eg. 25 C = 750 mV, 0). To convert this from the

digital value to degrees, we will use some of the Arduino's maths abilities. Then to display it

we'll use one of the IDE's rather powerful features, the debug window. We'll output the value

over a serial connection to display on the screen. Let's get to it.

One extra note, this circuit uses the Arduino IDE's serial monitor. To open this, first upload the

program then click the button which looks like a square with an antennae.

The TMP36 Datasheet:

http://ardx.org/TMP36

° ° C = 500mV

Wire
TMP36
Temperature Sensor
x1

2 Pin Header
x4

CIRC-10
Breadboard Sheet
x1

+5 volts

TMP36
(precision

temperature
sensor)

gnd
(ground) (-)

Arduino
analog
pin 0

gnd

+5v

signal
the chip will have
TMP36 printed on it

.:download:.
breadboard layout sheet

http://ardx.org/BBLS10
.:view:.

assembly video
http://ardx.org/VIDE10

WHAT WE’RE DOING:

Parts:

The Internet

THE CIRCUIT:

Schematic

Gibberish is Displayed
This happens because the serial

monitor is receiving data at a

different speed than expected.

To fix this, click the pull-down

box that reads "*** baud" and

change it to "9600 baud".

27

CIRC-10

More details, where to buy more parts, where to ask more questions:

http://ardx.org/CIRC10

Nothing Seems to Happen

This program has no outward

indication it is working. To see

the results you must open the

Arduino IDE's serial monitor.

(instructions on previous page)

Outputting voltage: do this first revert to the original code then change:
 Serial.println(temperature); This is a simple matter of changing one line. Our

---->
 Serial.print(temperature); sensor outputs 10mv per degree centigrade so to get

Serial.println(" degrees centigrade");
voltage we simply display the result of getVoltage().

The change to the first line means when we next output it
delete the line temperature = (temperature - .5) * 100;

will appear on the same line, then we add the informative

Outputting degrees Fahrenheit: text and a new line.
Again this is a simple change requiring only maths. To Changing the serial speed:

If you ever wish to output a lot of data over the serial line go degrees C ----> degrees F we use the formula:
(F = C * 1.8) + 32) time is of the essence. We are currently transmitting at 9600

add the line baud but much faster speeds are possible. To change this
temperature =

(((temperature - .5) * 100)*1.8) + 32; change the line:
 Serial.begin(9600); ----> Serial.begin(115200);before Serial.println(temperature);

Upload the sketch turn on the serial monitor, then change
More informative output: the speed from 9600 baud to 115200 baud in the pull down
Let's add a message to the serial output to make what

menu. You are now transmitting data 12 times faster.
is appearing in the Serial Monitor more informative. To

Temperature Value is

Unchanging
Try pinching the sensor with

your fingers to heat it up or

pressing a bag of ice against it

to cool it down.

Download the Code from (http://ardx.org/CODE10)
(copy the text and paste it into an empty Arduino Sketch)
/* --- void loop()
 * | Arduino Experimentation Kit Example Code | // run over and over again
 * | CIRC-10 .: Temperature :. | {
 * --- float temperature = getVoltage(temperaturePin);
 * //getting the voltage reading from the
 * A simple program to output the current temperature //temperature sensor
 * to the IDE's debug window
 * For more details on this circuit:

temperature = (temperature - .5) * 100;//converting from 10
//TMP36 Pin Variables mv
int temperaturePin = 0;//the analog pin the TMP36's //per degree wit 500 mV offset to
 //Vout pin is connected to //degrees ((volatge - 500mV) times
 //the resolution is

100) //10 mV / degree centigrade
 Serial.println(temperature); //printing the result //(500 mV offset) to make
 delay(1000); //waiting a second //negative temperatures an
}

option

/*
void setup() * getVoltage() - returns the voltage on the analog input
{ * defined by pin
 Serial.begin(9600); //Start the serial connection */
 //with the computer float getVoltage(int pin){
 //to view the result open the return (analogRead(pin) * .004882814);//converting from a 0
 //serial monitor //to 1024 digital range
 //last button beneath the file // to 0 to 5 volts
 //bar (looks like a box with an //(each 1 reading equals ~ 5
 //antenna)

millivolts}
}

NOT WORKING? (3 things to try)

MAKING IT BETTER

CODE (no need to type everything in just click)

MORE, MORE, MORE:

28

CIRC-11
.:Larger Loads:.

.:Relays:.

The final circuit is a bit of a test. We combine what we learned

about using transistors in CIRC03 to control a relay. A relay is

an electrically controlled mechanical switch. Inside the little

plastic box is an electromagnet that, when energized, causes a

switch to trip (often with a very satisfying clicking sound). You can buy relays that vary in size

from a quarter of the size of the one in this kit up to as big as a fridge, each capable of

switching a certain amount of current. They are immensely fun because there is an element of

the physical to them. While all the silicon we've played with to this point is fun sometimes you

may just want to wire up a hundred switches to control something magnificent. Relays give you

the ability to dream it up then control it with your Arduino. Now to using today's technology to

control the past. (The 1N4001 diode is acting as a flyback diode, for details on why it's there visit: http://ardx.org/4001)

2 Pin Header
x4

CIRC-11
Breadboard Sheet
x1

2.2k Ohm Resistor
Red-Red-Red
x1

560 Ohm Resistor
Green-Blue-Brown
x2

Red LED
x1

Relay
(DPDT)
x1

Arduino
pin 2

resistor
(2.2kohm)

gnd
(ground) (-)

Collector Emitter

Base

+5 volts

Transistor
P2N2222AG

co
ilcomNCNO Diode

(flyback)

Diode
(1N4001)
x1

the transistor will have
P2N2222AG printed on it
(some variations will have
the pin assignment reversed)

Transistor
P2N2222AG (TO92)
x1

Green LED
x1

.:download:.
breadboard layout sheet

http://ardx.org/BBLS11
.:view:.

assembly video
http://ardx.org/VIDE11

WHAT WE’RE DOING:

Parts:

The Internet

THE CIRCUIT:

Schematic

Watch the Back-EMF Pulse
Replace the diode with an LED. You’ll see it blink each time it “snubs” the coil voltage spike when it

turns off.

Controlling a Motor
In CIRC-03 we controlled a motor using a transistor. However if you want to control a larger motor a

relay is a good option. To do this simply remove the red LED, and connect the motor in its place

(remember to bypass the 560 Ohm resistor).

Controlling Motor Direction
A bit of a complicated improvement to finish. To control the direction of spin of

a DC motor we must be able to reverse the direction of current flow through it.

To do this manually we reverse the leads. To do it electrically we require

something called an h-bridge. This can be done using a DPDT relay to control

the motor's direction, wire up the following circuit. It looks complicated but can

be accomplished using only a few extra wires. Give it a try.

NOT WORKING? (3 things to try)

MAKING IT BETTER

CODE (no need to type everything in just click)

MORE, MORE, MORE:

No Clicking Sound
The transistor or coil portion of

the circuit isn't quite working.

Check the transistor is plugged

in the right way.

29

CIRC-11
File > 1.Basic > Blink
(example from the great arduino.cc site, check it out for other great ideas)

 Examples >

/*
 * Blink
 *
 * The basic Arduino example. Turns on an LED on for one second,
 * then off for one second, and so on... We use pin 13 because,
 * depending on your Arduino board, it has either a built-in LED
 * or a built-in resistor so that you need only an LED.
 *
 * http://www.arduino.cc/en/Tutorial/Blink
 */

int ledPin = 2; // *********** CHANGE TO PIN 2 ************

void setup() // run once, when the sketch starts
{
 pinMode(ledPin, OUTPUT); // sets the digital pin as output
}

void loop() // run over and over again
{
 digitalWrite(ledPin, HIGH); // sets the LED on
 delay(1000); // waits for a second
 digitalWrite(ledPin, LOW); // sets the LED off
 delay(1000); // waits for a second
}

More details, where to buy more parts, where to ask more questions:

http://ardx.org/CIRC11

Not Quite Working
The included relays are

designed to be soldered rather

than used in a breadboard. As

such you may need to press it

in to ensure it works (and it

may pop out occasionally).

Nothing Happens
The example code uses pin 13

and we have the relay

connected to pin 2. Make sure

you made this change in the

code.

Arduino
pin 2

resistor
(2.2kohm)

gnd
(ground) (-)

Collector Emitter

Base

+5 volts

Transistor
P2N2222AG

co
ilcomNCNO Diode

(flyback)

This work is licenced under the Creative Commons
Attribution-Share Alike 3.0 Unported License. To view a copy
of this licence, visit http://creativecommons.org/licenses/by-
sa/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California 94105, USA.

www.oomlout.com

(ARDX)
experimentation kit for arduino

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32

